

Trichoderma brevicompactum Complex: Rich Source of Novel and Recurrent Plant-Protective Polypeptide Antibiotics (Peptaibiotics)

THOMAS DEGENKOLB,[†] TOM GRÄFENHAN,^{§,#} HELGARD I. NIRENBERG,[§] Walter Gams.[⊥] and Hans Brückner*,[†]

Interdisciplinary Research Center (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Germany; Federal Biological Research Centre for Agriculture and Forestry (BBA), Institute for Plant Virology, Microbiology and Biological Safety, Berlin, Germany; and Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands

Three strains of Trichoderma brevicompactum and another four that are closely related to that species (Trichoderma cf. brevicompactum) were analyzed for the formation of polypeptide antibiotics (peptaibiotics) by LC/ESI-MSⁿ. These isolates were selected because of an antagonistic potential against Eutypa dieback and Esca disease of grapevine and have not yet been investigated for the production of peptide antibiotics. Fully grown cultures on potato dextrose agar were extracted with CH₂Cl₂/MeOH, and this extract was subjected to SPE using C₁₈ cartridges. The methanolic eluates were analyzed by LC/ESI-MSⁿ. All strains were found to produce membrane-active alamethicins F30. In addition to that, novel peptaibiotics were detected, namely, 14 12-residue trichocryptins B, 12 11-residue trichocryptins A, 19 11-residue trichobrevins A and B, 6 10-residue trichoferins, and 17 8-residue trichocompactins. These compounds may partially be responsible for the plant-protective action of the producers. Chemotaxonomic considerations also indicated the necessity to introduce another new species that is closely related to T. brevicompactum.

KEYWORDS: Peptaibiotic; peptaibol; alamethicin; α-aminoisobutyric acid; electrospray ionization mass spectrometry; peptide sequencing; Trichoderma; biocontrol

INTRODUCTION

More than 400 strains of 30 Trichoderma species were investigated in the course of a project aimed at preventive plant protection and biocontrol of two fungal diseases in organic viticulture: Eutypa dieback and Esca. These are latent trunk diseases that cause severe economic losses in organic grapevine production (1, 2). The in vitro bioactivity of the *Trichoderma* strains against the causal agents of Eutypa dieback, Eutypa lata, and Esca disease, Phaeomoniella chlamydospora and Phaeoacremonium aleophilum, was evaluated in plate assays using crude extracts. The most active isolates were identified either as Trichoderma brevicompactum (sensu stricto, ss), or as Trichoderma cf. brevicompactum (Trichoderma brevicompactum, sensu lato, sl). Compared to the bioactivity of isolates representing well-known biocontrol Trichoderma species (e.g.,

University of Giessen.

Centraalbureau voor Schimmelcultures.

T. atroviride, T. harzianum, T. koningii, and T. viride), crude extracts of strains belonging to the *T. brevicompactum* complex have been found to inhibit the growth of the above pathogens in vitro far more effectively (3). Detailed information about habitat and geographic origin of the seven isolates investigated in this study is given in **Table 1**.

T. brevicompactum, an anamorphic species with a pachybasium-like morphology, has been described from soil and tree bark in North, Central, and South America and southern Asia (4). The species was originally proposed to be phylogenetically closely related to Hypocrea lutea (4), but also discussed to be close to Trichoderma minutisporum/Hypocrea minutispora. As the alignment of translation—elongation factor (TEF) sequences turned out to be rather difficult, additional sequencing of the second largest RNA polymerase subunit (RPB2) has been performed. These experiments clearly indicated that the fungus known as T. brevicompactum comprises two phylogenetically different species that form a new lineage within the genus *Trichoderma*. These findings are further supported by the results of our work as outlined under Discussion.

Species of Trichoderma (teleomorphs in Hypocrea; 5) are commercially used as bioprotective agents against many fungal diseases. Most commercial preparations are formulated on the basis of conidia, but application of biomass or chlamydospores

^{*} Address correspondence to this author at the Interdisciplinary Research Center (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany (telephone 0049-641/99-39141; fax 0049-641/99-39149; e-mail hans.brueckner@ernaehrung.uni-giessen.de).

[§] Institute for Plant Virology, Microbiology and Biological Safety.

[#] Present address: Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.

Table 1. Trichoderma Strains Included in This Study

strain ^a	strains investigated ^b	habitat	geographic origin	yield ^c (mg)
1	CBS 109720 (ex-type)	soil in sunflower field	Geneva, NY	9.0
2	IBT 40840 (= CBS 119570)	soil	Iran	21.8
3	IBT 40839 (= CBS 119569)	soil	Qazvin, Iran	43.2
4	CBS 112445	soil	Costa Rica	4.0
5	IBT 40863 (= CBS 119577)	soil	Shar-e Kord, Chahar Mahall va Bakhtiari, Iran	14.5
6	ATCC 90237 (= CBS 119576)	micaceous clay from stream bed	Windhoek, Namibia	2.5
7	NRRL 3199 ^d `	unknown	unknown	17.4

^a 1-4, *T. brevicompactum*; 5-7, *T.* cf. *brevicompactum*. ^b Abbreviations: ATCC, American Type Culture Collection, Manassas, VA; CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; DSM, Deutsche Stammsammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany; IBT, BioCentrum, DTU, Kgs. Lyngby, Denmark; NRRL, ARS Culture Collection, Northern Regional Research Laboratory, National Center for Agricultural Utilization Research, Peoria, IL. ^c Dry weight of the methanolic extracts obtained after cleanup over Sep-Pak C₁₈ cartridges (see Experimental Procedures). ^d Alamethicin patent strain of Upjohn Co., Kalamazoo, MI.

has also been described. Choice of propagule for the preparation depends on both production system and intended application (6). The antifungal action of Trichoderma is complex. It depends on the species/strain studied and may involve competition for nutrients, plant root colonization, biofertilization, stimulation of plant resistance and defense mechanisms, rhizosphere modification, and different types of mycoparasitism. The latter may involve morphological changes such as coiling of parasite hyphae around the host and the formation of specialized appressorium-like structures (7–11).

The species of *Trichoderma* are known as saprotrophs, rare plant pathogens (10), or polyphagous mycoparasites, which are common in soil ecosystems. During the recent years, fungicolous fungi have attracted particular interest because of their bioactivity against economically important fungal diseases of crop plants, which cannot effectively be controlled by methods of classical plant protection (12).

Secondary metabolites of *Trichoderma* have extensively been reviewed (13, 14). Synergistic interactions between extracelluar metabolites such as wall-degrading chitinases, glucanases, and proteases, on the one hand, and antibiotics, on the other, have clearly been demonstrated in the past. The parallel formation of hydrolytic enzymes together with a group of membrane-active polypeptide antibiotics, named "peptaibiotics", and their synergistic action play an important role in mycoparasitism between T. harzianum and its fungal hosts such as Botrytis cinerea (15, 16). The term "peptaibiotic" was introduced by Brückner et al. (17) and reconsidered by Degenkolb et al. (18). It describes linear peptide antibiotics that (i) range from 500 to 2200 Da in molecular mass; (ii) show a high content of α-aminoisobutyric acid; (iii) are characterized by the presence of other nonproteinogenic amino acids and/or lipoamino acids; and (iv) possess an acylated N terminus, whereas the C terminus may consist of a free or methoxy-substituted 2-amino alcohol, amine, amide, free amino acid, diketopiperazine, or sugar alcohol. "Peptaibols" are regarded as a subgroup of the peptaibiotics, the N terminus of which is acetylated, whereas the C terminus is reduced to a 2-amino alcohol.

Recently, the term "peptaibiomics" was proposed by Krause et al. (19), describing—in analogy to proteomics—the approach to the analysis of the entirety of peptaibiotics, the so-called "peptaibiome", produced by a certain strain under defined conditions.

Peptaibiotics show interesting physicochemical and biological activities depending on particular structural properties, such as formation of pores in bilayer lipid membranes as well as antibacterial, antifungal, occasionally antiviral, insecticidal, and antiparasitic activities. Inhibition of mitochondrial ATPase, uncoupling of oxidative phosphorylation, immunosuppression, inhibition of platelet aggregation, and induction of fungal

morphogenesis and neuroleptic effects have been reported (summarized in refs 18 and 19).

Detailed information on structures of peptaibiotics and their classification into subfamilies (20) can be obtained from public Internet resources such as the "Peptaibol Database" (21). More than 250 peptaibiotics produced by members of the genus *Trichoderma* are described in the literature. Recently, a review comprising structures and properties of 186 different peptaibiotics from *Trichoderma* has been published (14).

Screening and sequencing of peptaibiotics with a molecular mass up to 2000 Da can be accomplished by advanced methods of tandem mass spectrometry, especially electrospray ionization (ESI-MS) techniques (for a review see ref 18) and completed by GC/EI-MS and HPLC approaches (22).

As species identification of *Trichoderma* strains was demonstrated to be possible by image analysis of HPLC chromatograms (23), on-line coupling of HPLC and ESI-ion-trap-MSⁿ should therefore combine the advantages of both analytical techniques, thus providing a more reliable structural identification of compounds produced by a certain strain.

To date, 88 *Trichoderma* species have been characterized by sequencing of ribosomal DNA, and these data suggest that many species recognized on the basis of morphology have probably been misidentified in the past (5, 24). Recently, the species *Trichoderma viride* was subdivided into two species—*T. viride* and *T. asperellum*—on the basis of ribosomal DNA. Antibiotic production was exclusively restricted to *T. asperellum*, whereas *T. viride* (ss) produced no antibiotics (25, 26).

Therefore, it may be hypothesized that the production of peptaibiotics under standardized conditions might be used as a chemotaxonomic marker in support of morphological, molecular, and other (bio)chemical data for the differentiation between species of the genus *Trichoderma*.

None of the strains used in this study has been screened for peptaibol production, although six of them were previously shown to produce trichothecene-type mycotoxins, such as harzianum A and/or trichodermin (27). Recently, harzianum A was also detected in cultures of NRRL 3199, which is *T.* cf. *brevicompactum*.

The present study was aimed at (i) screening of selected plant-protective strains for the production of peptaibols and peptaibol-like antibiotics (peptaibiotics), (ii) sequencing of new and recurrent peptides found, and (*iii*) testing the above hypothesis concerning a possible use of the pattern of peptaibiotics for chemotaxonomy.

EXPERIMENTAL PROCEDURES

Chemicals. Acetonitrile (MeCN; Chromasolve for HPLC, far UV, 99.9%) and dichloromethane (ACS reagent, 99.6%) were obtained from Sigma-Aldrich (Steinheim, Germany); methanol (MeOH; 99.8%, gradi-

Table 2. Structural Variations of Peptaibiotics from the T. brevicompactum Complex^a

										re	sidue										
peptaibiotic ^b		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ALM F30	Ac	Aib	Pro	Aib	Ala	Aib	Ala	Gln Glu	Aib	Aib Vxx Lxx	Aib	Gly	Vxx Lxx	Aib	Pro	Vxx	Aib	Aib	Glu	Gln	Pheol
TCP	Ac	Aib	Gly	Ala	Lxx	Aib Vxx	Gly Ala Ser	Vxx Lxx	Vxx												
TBV	Ac	Aib	Ala Ser	Aib Vxx	Aib Vxx Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Alaol Aibol Vxxol Lxxol									
TCT-A	Ac	Vxx Lxx	Aib	Pro	Vxx Lxx	Aib	Pro	Aib Lxx	Aib Vxx Lxx	Aib	Pro	Lxxol									
TCT-B	Ac	Vxx Lxx	Aib	Pro	Vxx	Vxx Lxx	Aib	Pro	Aib Lxx	Aib Vxx Lxx	Aib	Pro	Lxxol								
TF	MDA	Pro	AHMOD desmethyl- AHMOD	Ala	Aib	Aib Vxx	Aib Vxx Lxx	Gly Ala Aib	Aib	Aib	AAE AMAE										

^a Exchangeable positions in a general sequence are italicized. A list of sequences of peptaibiotics detected in the individual strains is presented in the captions to **Figures 1** and **2**. ^b ALM F30, alamethicin F30; TCP, trichocompactin; TBV, trichobrevin; TCT-A, trichocryptin A; TCT-B trichocryptin B; TF, trichoferin.

ent grade, for HPLC) and trifluoroacetic acid (TFA, 98.0%) were purchased from Fluka (Steinheim, Germany). Toluene (SupraSolv, 99%, for gas chromatography) was bought from VWR International (Darmstadt, Germany). Anhydrous KH₂PO₄ and Na₂HPO₄•H₂O were from Fluka, and methyl orange (helianthin) was from Riedel-de Haën (Seelze, Germany). Bidistilled water was freshly prepared from demineralized tap water prior to analysis using a quartz distil (Heraeus, Kleinostheim, Germany).

Cultivation of Strains. Cultures were grown at room temperature $(23-26~^{\circ}\text{C})$ under ambient daylight on Difco potato dextrose agar (PDA, lot 4300389) obtained from Becton Dickinson (BD, Heidelberg, Germany). The medium was prepared according to the directions of the manufacturer and autoclaved at 121 $^{\circ}\text{C}$ for 15 min without pH adjustment. A final pH of 5.6 ± 0.2 was measured after sterilization.

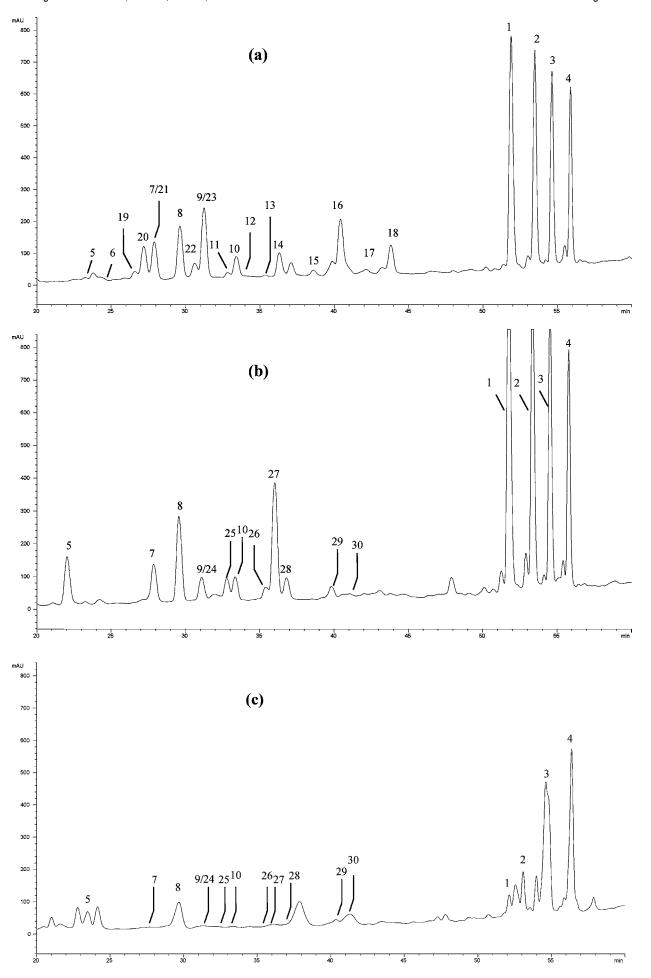
Subcultures were inoculated from PDA slants used for preservation of strains, and a loop of conidia was streaked on 9.5 cm diameter plastic Petri dishes containing 20 mL of PDA. Subcultures were grown for 4 days and used for inoculation of the main culture.

Extraction of Peptaibiotics. After 6 days of cultivation, fungal cultures were extracted with a mixture of CH₂Cl₂/MeOH, 1:1. To prevent any possible contamination of the extracts by plasticizers, a ring of aluminum with a small spout on its upper margin was punched into the agar before application of the solvent mixture. A 5 mL aliquot of the solvent was applied onto the surface of each plate culture and spread with a Drigalski spatula, and the extract was poured off through the spout. This procedure was repeated twice; the combined extracts from each agar plate were transferred into Pyrex tubes and centrifuged at 2400g for 30 min. The supernatant was filtered and evaporated to dryness in vacuo.

Cleanup was performed using Sep-Pak C_{18} cartridges (Waters Corp., Milford, MA) as previously described (19). Briefly, each cartridge (dimensions: 1.5 cm \times 1 cm i.d.) was conditioned by successive addition of MeOH, H₂O, and H₂O/MeOH, 2:1 (10 mL each). The sample was redissolved in H₂O/MeOH, 2:1, and centrifuged at 2400g for 30 min, and the supernatant was filtered; the filtrate was applied to the conditioned cartridge. The cartridge was rinsed with H₂O and H₂O/MeOH, 2:1 (10 mL each). Finally, peptaibiotics were eluted with 10 mL of MeOH. The eluate was evaporated to dryness in vacuo. The dry weight of the residue (see **Table 1**) was determined using an analytical balance. A 10 μ L aliquot of a 1% methanolic solution that had been freshly prepared from the dried residue of the methanolic eluate prior to analysis was used for HPLC or ion-trap ESI-LC-MS measurements, respectively.

HPLC and Ion-Trap-ESI-LC-MS Measurements. For HPLC, a HP 1100 series instrument was used. ESI mass spectra were recorded

on an LCQ instrument (Thermo Finnigan MAT, San Jose, CA). The gradient used for HPLC and ion-trap-ESI-LC-MS measurements was described previously (19); further details concerning the analytical equipment were given in an earlier paper (28). A CID energy of 45 or 65 eV was applied to generate sequence-specific b- and y-type fragments from putative [M + H]⁺, [M + Na]⁺, or sequence-specific fragment ions, respectively. The collision energy for MS/MS and MS" measurements was set between 25 and 65 eV, typically at 45 eV.


Fragment ion series were assigned in accordance with the Roepstorff/Fohlman—Biemann nomenclature used previously. In cases when the isomeric amino acids Leu/Ile or Val/Iva (Iva, isovaline) could not be distinguished, the abbreviations Lxx and Vxx were used instead (29, 30).

RESULTS

Possible structural variations of all peptaibiotics investigated in this study are summarized in **Table 2**. HPLC elution profiles (detection wavelength $\lambda = 205$ nm) of the peptaibiotic-containing fraction from all strains are shown in **Figures 1** and **2**. In the following section, the HPLC/ESI-MSⁿ-based sequencing and structural characterization of peptaibiotics produced by *T. brevicompactum* and *T.* cf. *brevicompactum* are described.

T. brevicompactum CBS 109720. The HPLC elution profile of this strain (**Figure 1a**) is dominated by four major peaks. Furthermore, MS/MS, MSⁿ, and CID-MS investigations and comparison of these results with the recent literature (28) and data obtained from experiments with authentic material from T. viride NRRL 3199 confirmed the structures of these compounds as the acidic alamethicins (ALM): 1, F30/3; 2, F30/ 5; 3, F30/7; and 4, F30/9. The strains of the T. brevicompactum group were not screened for the presence of neutral alamethicins F50 (ALM F50) in the course of this study. Analysis of that subgroup would have required the same conditions as described above but without TFA in the eluents. Voltage-dependent pore formation and antimicrobial activity of alamethicins have been reviewed (31). Alamethicins are, so far, only known from T. viride NRRL 3199 (28), which now can be classified as T. cf. brevicompactum (3).

A second group of six novel eight-residue peptaibiotics from *Trichoderma brevicompactum* was detected. We name these compounds **trichocompactins** (TCP) **5**, Ia; **6**, Ib; **7**, IIa; **8**, IIb;

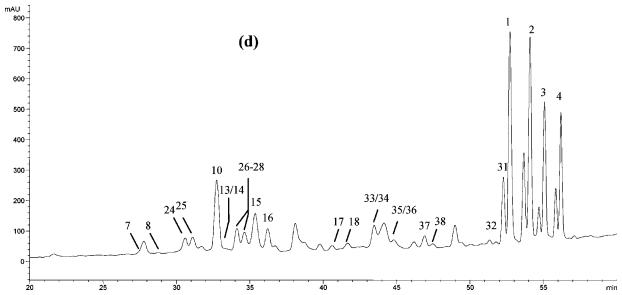


Figure 1. HPLC elution profiles of the peptaibiotic-containing fraction of *T. brevicompactum* strains (a) CBS 109720, (b) IBT 40839, (c) IBT 40840, and (d) CBS 112445. Annotations refer to consecutive numbering of peptides used in the text. Numbers separated by a slash refer to coeluting peptides. (a) Alamethicins (1–4), trichocompactins (5–10), trichocryptins B (11–18), trichocryptins A (19–23); (b) alamethicins (1–4), trichocompactins (5–10), trichocryptins A (24–30); (d) alamethicins (1–4, 31, and 32), trichocompactins (5–10), trichocryptins A (23–28), trichocryptins B (13–18 and 33–38).

9, IIIa; and 10, IIIb. Their fragmentation patterns and sequences are listed in Tables 3 and 4.

The N-terminal sequence Ac-Aib-Gly-Ala-Leu-Aib was previously described for the trichovirins—peptaibols with a C-terminal Gln-Leuol motif from *T. viride* NRRL 5243 (30). That strain is currently deposited as *T. harzianum* sl. Furthermore, valine as a C-terminal residue is known from the trichobrachins TB IIa A and B, only, which have been isolated from *T. longibrachiatum* CBS 936.69 (32), a strain now reclassified as *T. paceramosum/T. ghanense*.

A third group of homologous peptaibols exhibited m/z 1210, 1224, 1238, and 1252, which were accompanied by m/z 1226, 1240, 1254, and 1268, respectively. It was demonstrated by CID-MSⁿ that the former series of ions represents the predominant [M+ Na]+, whereas the latter corresponds to the [M+ K]+ adduct, which is present in smaller amounts. Because the [M+H]+ ions of any of these compounds were never observed, the intensive sodiated adducts had to be selected as precursors for sequencing. Compounds 11–18 are novel 12-residue peptaibols from *Trichoderma*, which we name **trichocryptins B** (TCT-B) I, II, III, and IV—owing to the **cryptic** behavior of their [M+H]+ ions.

Fragmentation of $[M + Na]^+$, as illustrated in **Table 5**, exclusively generated a sodiated y-type series of daughter ions (y_2-y_8) , which was dominated by the corresponding series of sodiated x-type ions, thus leading to complete suppression of N-terminal fragments. Loss of water from the $[M + Na]^+$ ions indicated the presence of a C-terminal amino alcohol. The first sequence-specific pair of fragment ions is y_2/x_2 . The diagnostic difference of either m/z 201 or 215 supports the presence of a C-terminal Pro-Vxxol or Pro-Lxxol, which is followed by an Aib residue. The extremely labile tertiary Aib-Pro bond is preferably cleaved (33), thus explaining the absence of y_1/x_1 fragments. Cleavage of the Aib-Pro bond between positions 6 and 7 is the reason for the generation of an additional intensive sodiated y-type fragment comprising amino acids 7–12 (cf. Tables 2 and 6). Further sequence information was obtained from CID-MS experiments: Application of a CID energy of

45 and 65 eV generated the diagnostic fragments b_2-b_6 and their corresponding y-type ions. The structure of these b- and y-type ions was confirmed by CID-MSⁿ experiments. However, attempts to detect the b_1 fragment by CID-MSⁿ of the ions b_6 and b_5 were unsuccessful. Moreover, the intensity of b_2-b_4 was insufficient to perform further CID-MSⁿ investigations. Despite this, literature data revealed a single sequence, corresponding only to the pair of b_2/b_3 ions m/z 241/338 present in compounds 12 and 14-18: the N-terminal fragment Ac-Leu-Aib-Pro has previously been described for the cervinins I and II—12-residue peptaibol antibiotics from Mycogone cervina A09-02, parasitizing Helvella (Paxina) acetabulum (34). Assuming structural homology, the b_2/b_3 ion pair m/z 227/324 could represent Ac-Val-Aib-Pro as an N-terminal sequence of compounds 11 and 13. The sequence Ac-Val-Aib is known from the protonophoric bergofungin A from Emericellopsis donezkii HKI 0059 (35) as well as from the antiprotozoic/antihelminthic antiamoebins XIII and XIV from Stilbella fimetaria (syn. Stilbella erythrocephala) ATCC 28144 (22). The corresponding isoforms Ac-Ile-Pro and Ac-Iva-Pro have not been described as N termini of peptaibiotics, yet.

The partial sequence Pro-Aib-Leu-Aib-Pro-Leuol is known as the C terminus of harzianins HC I, HC VI, HC XI, and HC XIV from *T. harzianum* M-903614 and M-903603 (*33*), whereas the other C-terminal sequences listed in **Table 6** represent new structural variations.

The strain produces a fourth group of homologous peptaibols displaying m/z 1125 (compounds **19–21**) and 1139 (compounds **22/23**, all [M + Na]⁺). Basically, the mass spectrometric fragmentation of these substances follows the same general scheme described above for compounds **11–18**. The CID-MS experiments generated a series of the diagnostic fragments b_2 – b_5 . Briefly, the—presumably invariable—Vxx residue at position 4 of the peptide chain is lost, thus leading to the appearance of novel 11-residue peptaibols, which we name **trichocryptins A** (TCT-A) I and II. Fragmentation patterns and sequences of these compounds are listed in **Tables 5** and **6**, respectively. Additional homologues and positional isomers of compounds **11–23** are

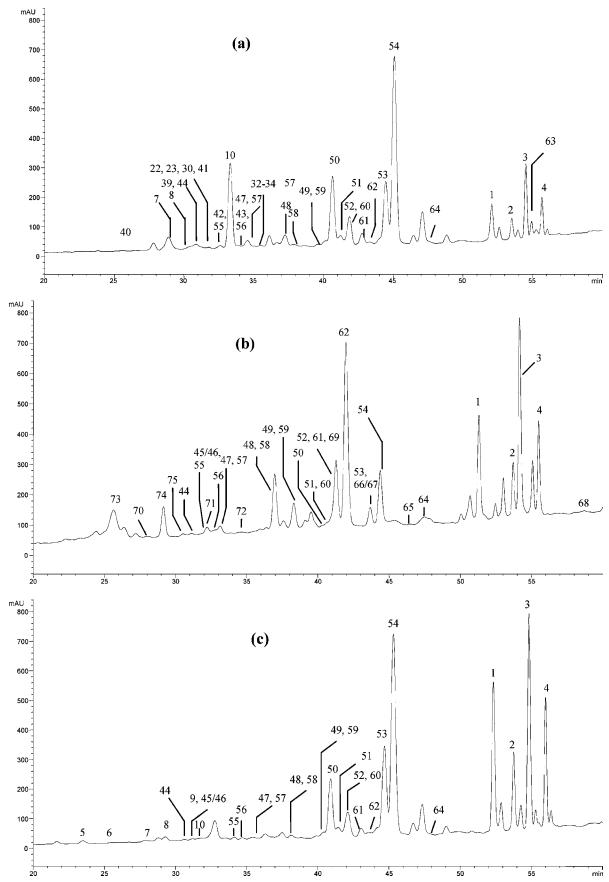


Figure 2. HPLC elution profiles of the peptaibiotic-containing fraction of *T.* cf. brevicompactum strains (a) ATCC 90237, (b) NRRL 3199, and (c) IBT 40863. Annotations refer to consecutive numbering of peptides used in the text. Numbers separated by a slash refer to coeluting peptides. (a) Alamethicins (1–4 and 63), trichocompactins (5–8, 10, and 39–43), trichocryptins B (15–18 and 33–36), trichobrevins A and B (44–62), trichoferin A (64); (b) alamethicins (1–4), trichocompactins (70–75), trichobrevins (44–62); (c) alamethicins (1-4), trichocompactins (5–10), trichocryptins B (13–18), trichotryptins A (22–28), trichobrevins A and B (44–62), trichoferin A (64).

Table 3. Diagnostic Fragment Ions (*m/z*) of Trichocompactins^a Produced by Members of the *T. brevicompactum* Complex

	5	6	7	8	9	10	40	39	41	42	43
ion	la	lb	lla	Ilb	Illa	IIIb	IV	Va	Vb	Vla	VIb
[M + H]+	726	726	740	740	754	754	756	770	770	784	784
$[M - H_2O]^+$	708	708	722	722	nd	736	738	752	752	766	766
$[M + Na]^{+}$	748	748	762	762	776	776	778	792	792	806	806
b_1	nd ^b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
b_2	184	nd	184	184	184	nd	184	184	184	nd	184
b_3	255	269	255	255	255	nd	255	255	255	nd	255
b_4	368	354	368	368	368	368	368	368	368	381	368
b_5	453	439	453	453	467	467	453	453	453	467	467
$b_6 - H_2O$	nd	nd	nd	nd	nd	nd	522	522	522	nd	nd
b_6	510	496	510	510	524	524	540	540	540	nd	554
$b_7 - H_2O$	nd	nd	nd	nd	nd	nd	621	635	635	649	649
b_7	609	609	623	623	637	637	639	653	653	667	667
a_4	340	nd	340	nd	340	340	340	340	340	nd	nd
$y_3 - H_2O$	nd	nd	nd	nd	nd	nd	nd	300	nd	nd	nd
<i>y</i> ₃	nd	nd	287	nd	nd	287	nd	318	nd	nd	nd
$y_4 - H_2O$	nd	nd	nd	nd	nd	nd	nd	nd	385	nd	nd
<i>y</i> ₄	nd	nd	372	nd	nd	nd	nd	nd	nd	nd	nd
<i>y</i> 5	nd	nd	nd	485	nd	nd	nd	516	nd	nd	nd

	70	71	72	73	74	75
ion	VII	VIIIa	VIIIb	IX	Xa	Xb
[M + H]+	740	754	754	756	770	770
$[M - H_2O]^+$	722	736	736	nd	752	752
$[M + Na]^{+}$	762	776	776	778	792	792
b_1	nd	nd	nd	nd	nd	nd
b_2	184	184	184	184	184	184
b_3	255	255	255	255	255	255
b_4	368	368	368	368	368	368
$b_5 - H_2O$	nd	nd	nd	nd	nd	nd
b_5	453	453	453	453	453	453
$b_6 - H_2O$	nd	nd	nd	522	522	522
b_6	524	524	524	nd	540	540
$b_7 - H_2O$	nd	nd	nd	621	635	635
b ₇	623	637	637	nd	653	653
a 4	340	nd	nd	340	340	340
$y_3 - H_2O$	nd	nd	nd	nd	nd	300
<i>y</i> ₃	nd	302	nd	nd	nd	nd
<i>y</i> ₅	485	nd	nd	nd	516	nd
<i>y</i> ₆	nd	nd	nd	nd	nd	601

^a Arabic numbers in bold refer to the consecutive numbering of peptides used throughout the text and in **Figures 1** and **2**. Roman numerals followed by lower case Arabic letters in **Tables 3–8** refer to the abbreviations used for the individual trichocompactins, trichocryptins, and trichobrevins. Capital letters in **Tables 9** and **10** refer to the abbreviations used for the individual trichoferins. Capital letters for characterization of trichoferins are introduced for conformity reasons in the nomenclature of lipoaminopeptides. ^b Not detected.

expected from the corresponding TIC traces. However, their structures could not be determined due to their low abundance in the mixture.

T. brevicompactum **IBT 40839.** Analysis of the four major peaks displayed in the HPLC elution profile (**Figure 1b**) and comparison of these data with those obtained for strain CBS 109720 confirmed the presence of compounds 1–5 and 7–10.

In contrast to what was found in strain CBS 109720, strain IBT 40839 did not produce any of the compounds **11–23**, but a mixture of peptaibols with molecular masses m/z 1153 (**24**/**25**), 1167 (**26–28**), and 1181 (**29**/**30**, all [M + Na]⁺), representing higher homologues of trichocryptins A I and A II. Fragmentation and sequences of these trichocryptins A III, IV, and V are listed in **Tables 5** and **6**. The C-terminal motif of trichocryptins A IV b, IV c, V a, and V b, that is, Pro-Leu-Leu-Aib-Pro-Leuol, has previously been described for harzianin HK VI from *T. pseudokoningii* MVHC 662 (*36*) and the hypomurocins A I, A II, A IV, and A V—hemolytic peptaibols

Table 4. Sequences of Trichocompactins I–X Produced by Members of the *T. brevicompactum* Complex^a

					resi	due					
			1	2	3	4	5	6	7	8	$[M + H]^{+}$
5	la	Ac	Aib	Gly	Ala	Lxx	Aib	Gly	Vxx	Vxx	726
6	lb				[269]	Aib	Aib	Gly	Lxx	Vxx	726
7	lla	Ac	Aib	Gly	Ala	Lxx	Aib	Gly	Lxx	Vxx	740
8	Ilb	Ac	Aib	Gly	Ala	Lxx	Aib	Gly	Lxx	Vxx	740
9	Illa	Ac	Aib	Gly	Ala	Lxx	Vxx	Gly	Lxx	Vxx	754
10	IIIb	Ac	Aib	Gly	Ala	Lxx	Vxx	Gly	Lxx	Vxx	754
40	IV	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Vxx	Vxx	756
39	Va	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	770
41	Vb	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	770
42	Vla	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	784
43	VIb	Ac	Aib	Gly	Ala	Lxx	Vxx	Ser	Lxx	Vxx	784
70	VII	Ac	Aib	Gly	Ala	Lxx	Aib	Ala	Vxx	Vxx	740
71	VIIIa	Ac	Aib	Gly	Ala	Lxx	Aib	Ala	Lxx	Vxx	754
72	VIIIb	Ac	Aib	Gly	Ala	Lxx	Aib	Ala	Lxx	Vxx	754
73	IX	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	756
74	Xa	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	770
75	Xb	Ac	Aib	Gly	Ala	Lxx	Aib	Ser	Lxx	Vxx	770

^a Bold numbers in the first column refer to consecutive numbering of peptides used throughout the text. Abbreviations of compound names used in the second column refer to the individual compounds introduced in the text.

from strain IFO 31288 (37). That strain was originally described as *Hypocrea muroiana*, but recently demonstrated to be *Trichoderma atroviride/Hypocrea atroviridis* by internal transcript spacer (ITS) and elongation factor (EF) sequencing.

T. brevicompactum **IBT 40840.** Analysis of the four major peaks displayed in the HPLC elution profile (**Figure 1c**) and comparison of these data with those obtained for strain CBS 109720 confirmed the presence of compounds 1-9. The strain also produces peptaibols with molecular masses m/z 1153, 1167, and 1181 (all $[M + Na]^+$), having the same retention time(s) and thus supposed to be identical or positionally isomeric with compounds 24-30 described for strain IBT 40839.

T. cf. brevicompactum CBS 112445. Analysis of the four major peaks displayed in the HPLC elution profile (**Figure 1d**) and comparison of these data with those obtained for strain CBS 109720 confirmed the presence of compounds **1–4**. Additional ALMs are present, the sequence of which could only partially be assigned by MS/MS, which is due to their low abundance in the mixture. For example, fragmentation of m/z 1950 [M + H]⁺ at $t_R = 50.4$ and comparison with literature data reported for ALMs F30 (28) indicated that alamethicin F30/2 (compound 31) could be present as a minor compound. Another novel minor compound, 32, was detected during fragmentation of m/z 1964 $([M + H]^+)$ at $t_R = 50.9$. Again, assuming structure homology with literature data deduced for the ALM F30 peptides (28), including invariability of amino acid residues 1 and 2, the following possible sequences are proposed for this new ALM F30/11 as the intensity of the fragment ions obtained during MS^3 was insufficient to perform further MS^n experiments. According to structure homologies with compounds 1-4, the variable positions 3, 5, and 8 in compound 32 consist of either Ala or Aib, respectively, whereas positions 9–20 are invariable. Theoretically, three positional isomers are possible. Compounds **5**−**10** are also present—the latter displaying a particularly intense peak in that part of the HPLC elution profile. Sodiated molecular ions m/z 1139, 1153, and 1167 were detected, which may represent compounds 22-28 or homologues thereof.

A fourth group of peptaibols with molecular masses m/z 1224, 1238, and 1252 may consist of homologues and positional isomers of compounds 13–18. In contrast to what has been

 Table 5. Diagnostic Fragment Ions (m/z) of Trichocryptins A and B Produced by Members of the T. brevicompactum Complex^a

ion	11 B-la	12 B-lb	13 B-Ila	14 B-IIb	15 B-IIIa	16 B-IIIb	17 B-IVa	18 B-IVb	33 B-Va	34 B-Vb	35 B-Vc	36 B-Vd	37 B-Vla	38 B-VIb
[M + No]+			1224	1224	1238				1266					1200
[M + Na]+	1210 1226	1210 1226				1238 1254	1252	1252		1266	1266	1266	1280	1280
[M + K]+			1240	1240	1254		1268	1268	1282	1282	1282	1282	1296	1296
$[M + Na - H_2O]^+$	1192	1192	nd	nd	nd nd	1220	1234	1234	nd	nd	nd	nd	1262	1262
<i>b</i> ₁	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
b_2	227	nd	227	241	nd	241	nd	241	241	241	241	241	241	241
<i>b</i> ₃	324 423	nd nd	324 423	338 437	338 437	338 437	nd 437	338 437	338 437	338 437	338 437	338 437	338 437	338 437
b ₄ b ₅	522	536	522	536	536	536	550	550	550	550	536	550	550	550
b_6	607	621	607	621	621	621	635	635	635	635	621	635	635	635
[Pro-Vxx + H]+	197	nd	197	197	197	197	197	197	197	197	197	197	197	197
[Pro-Vxx+Vxx + H]+	296	nd	296	296	296	296	nd	nd	nd	nd	296	296	296	296
[Pro-Vxx-Lxx + H] ⁺	nd	nd	nd	nd	nd	nd	310	310	310	310	nd	nd	310	310
[Pro-Vxx-Vxx-Aib + H]+	381	nd	381	381	381	381	nd	nd	nd	nd	381	nd	nd	nd
[Pro-Vxx-Lxx-Aib + H] ⁺	nd	nd	nd	nd	nd	nd	395	395	395	395	nd	nd	395	nd
[Pro-Vxx-CO + H]+	169	nd	169	169	169	169	169	169	169	169	169	169	nd	nd
[Pro-Vxx-Vxx-CO + H]+	268	nd	268	268	268	268	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Vxx-Lxx-CO + H]+	nd	nd	nd	nd	nd	nd	282	282	282	282	nd	nd	282	nd
[Pro-Vxx-Vxx-Aib-CO + H]+	nd	nd	353	nd	nd	353	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Vxx-Lxx-Aib-CO + H]+	nd	nd	nd	nd	nd	nd	nd	367	nd	nd	nd	nd	367	nd
[Pro-Aib-Aib-Aib-Pro-Lxxol + Na]+	nd	589	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Aib-Vxx-Aib-Pro-Lxxol + Na]+	603	nd	nd	603	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Aib-Lxx-Aib-Pro-Lxxol + Na]+	nd	nd	617	nd	617	617	617	617	nd	nd	nd	nd	nd	nd
[Pro-Lxx-Lxx-Aib-Pro-Vxxol + Na]+ or	nd	nd	nd	nd	nd	nd	nd	nd	631	631	nd	631	nd	nd
[Pro-Vxx-Lxx-Aib-Pro-Lxxol + Na]+														
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]+	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	645	nd	645	645
[Pro-Aib + H]+	nd	nd	183	183	nd	183	183	183	nd	nd	nd	nd	nd	nd
[Pro-Aib-Lxx + H]+	nd	nd	296	nd	296	296	296	296	nd	nd	nd	nd	nd	nd
[Pro-Aib-Lxx-Aib + H]+	nd	nd	381	nd	381	381	381	381	nd	nd	nd	nd	nd	nd
$(y_8 + Na)^+$	nd	nd	nd	nd	nd	445	459	459	459	459	nd	nd	459	459
$(y_7 + Na)^+$	nd	nd	544	558	558	558	572	572	572	572	558	nd	572	nd
$(y_6 + Na)^+$	629	nd	629	643	643	643	657	657	657	657	643	nd	657	nd
$(y_5 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	754	nd
$(y_4 + Na)^+$	811	825	811	825	825	825	839	839	853	867	853	867	867	867
$(y_3 + Na)^+$	910	910	924	924	938	938	952	952	966	980	966	980	980	980
$(y_2 + Na)^+$	995	995	1009	1009	1023	1023	1037	1037	1051	1065	1051	1065	1065	1065
$(y_1 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(x_8 + Na)^+$	417	nd	nd	nd	nd	417	431	431	nd	nd	431	431	431	nd
$(x_7 + Na)^+$	516	530	516	530	530	530	544	544	544	544	530	544	544	544
$(x_6 + Na)^+$	601	615	601	615	615	615	629	629	629	629	615	629	629	629
		010						ام م						
$(x_6 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$	nd 783	nd 797	nd 783	nd 797	797	nd 797	811	811	825	nd 839	nd 825	nd 839	nd 839	nd 839
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$	nd 783 882	nd 797 882	nd 783 896	nd 797 896	797 910	797 910	811 924	811 924	825 938	839 952	825 938	839 952	839 952	839 952
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$	nd 783 882 967	nd 797 882 967	nd 783 896 981	nd 797 896 981	797 910 995	797 910 995	811 924 1009	811 924 1009	825 938 1023	839 952 1037	825 938 1023	839 952 1037	839 952 1037	839 952 1037
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$	nd 783 882	nd 797 882	nd 783 896	nd 797 896	797 910	797 910	811 924	811 924	825 938	839 952	825 938	839 952	839 952	839 952
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd	nd 783 896 981 nd	nd 797 896 981 nd	797 910 995 nd	797 910 995 nd	811 924 1009 nd	811 924 1009 nd	825 938 1023 nd	839 952 1037 nd	825 938 1023 nd	839 952 1037 nd	839 952 1037 nd	839 952 1037 nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd	nd 783 896 981 nd 21 A-Ic	nd 797 896 981 nd 22 A-IIa	797 910 995 nd 23 A-IIb	797 910 995 nd 24 A-III	811 924 1009 nd	811 924 1009 nd 25 A-IIIb	825 938 1023 nd 26 A-IVa	839 952 1037 nd 27 A-IVb	825 938 1023 nd	839 952 1037 nd	839 952 1037 nd 29 A-Va	839 952 1037 nd 30 A-Vb
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ ion A-I $(M + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 -lb	nd 783 896 981 nd 21 A-Ic	nd 797 896 981 nd 22 A-IIa 1139	797 910 995 nd 23 A-IIb	797 910 995 nd 24 A-III	811 924 1009 nd	811 924 1009 nd 25 A-IIIb	825 938 1023 nd 26 A-IVa 1167	839 952 1037 nd 27 A-IVb	825 938 1023 nd	839 952 1037 nd 28 IVc	839 952 1037 nd 29 A-Va	839 952 1037 nd 30 A-Vb
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ ion $A-I$ $[M + Na]^+$ $[M + K]^+$ 112	nd 783 882 967 nd	nd 797 882 967 nd 20 -lb	nd 783 896 981 nd 21 A-Ic 1125 1141	nd 797 896 981 nd 22 A-IIa 1139 1155	797 910 995 nd 23 A-IIb 1139 1155	797 910 995 nd 24 A-III 115 116	811 924 1009 nd	811 924 1009 nd 25 A-IIIb 1153 1169	825 938 1023 nd 26 A-IVa 1167 1185	839 952 1037 nd 27 A-IVb 1167 1185	825 938 1023 nd	839 952 1037 nd 28 IVc	839 952 1037 nd 29 A-Va 1181 1197	839 952 1037 nd 30 A-Vb
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ ion $A-I$ $[M + Na]^+$ $[M + K]^+$ $[M + Na - H_2O]^+$ n	nd 783 882 967 nd 25 1:1 1:1	nd 797 882 967 nd 20 lb	nd 783 896 981 nd 21 A-Ic 1125 1141 nd	nd 797 896 981 nd 22 A-IIa 1139 1155 nd	797 910 995 nd 23 A-IIb 1139 1155 nd	797 910 995 nd 24 A-III 115 116	811 924 1009 nd	811 924 1009 nd 25 A-IIIb 1153 1169 nd	825 938 1023 nd 26 A-IVa 1167 1185 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd	825 938 1023 nd 2 A-	839 952 1037 nd 28 IVc 67 85 nd	839 952 1037 nd 29 A-Va 1181 1197 nd	839 952 1037 nd 30 A-Vb 1181 1197 nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ ion $A-I$ $[M + Na]^+$ $[M + Na]^+$ $[M + Na - H_2O]^+$ b_1	nd 783 882 967 nd 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nd 797 882 967 nd 20 -lb	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd	797 910 995 nd 23 A-IIb 1139 1155 nd nd	797 910 995 nd 24 A-III 115 116 n	811 924 1009 nd	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd	825 938 1023 nd 2 A-	839 952 1037 nd 28 IVC	839 952 1037 nd 29 A-Va 1181 1197 nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ ion $A-I$ $[M + Na]^+$ $[M + K]^+$ $[M + Na - H_2O]^+$ b_1 b_2 22	nd 783 882 967 nd	nd 797 882 967 nd 20 -lb 125 141 nd nd 227	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd 241	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd 241	797 910 995 nd 23 A-IIb 1139 1155 nd nd 241	797 910 995 nd 24 A-III 115 116 n n	811 924 1009 nd	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241	825 938 1023 nd A-	839 952 1037 nd 28 IVC 167 185 nd nd 241	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 -lb 125 141 nd nd 227 324	nd 783 896 981 nd Park 125 1125 1141 nd nd 241 338	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd 241 338	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338	797 910 995 nd 24 A-III 115 116 n n 24 33	811 924 1009 nd	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338	825 938 1023 nd 2 A- 11 11	839 952 1037 nd 28 IVc 167 185 nd nd 241 338	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 -lb 125 141 nd nd 227 324 423	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd 241 338 437	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd 241 338 437	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437	797 910 995 nd 24 A-III 115 116 n n 24 33 43	811 924 1009 nd la 3 9 d d 1 1 8 7	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437	825 938 1023 nd 2 A- 11 11	839 952 1037 nd 1Vc 167 885 nd nd 241 338 137	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nd 797 882 967 nd 20 lb 125 141 nd nd 227 324 423 508	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd 241 338 437 522	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522	797 910 995 nd 23 A-IIIb 1139 1155 nd nd 241 338 437 522	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52	811 924 1009 nd da 3 9 dd dd 11 8 7 2	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522	825 938 1023 nd 2 A- 11 11	839 952 1037 nd 1Vc 167 185 nd nd 241 338 137 522	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nd 797 882 967 nd 20 lb 125 141 nd nd 227 324 423 508 197	nd 783 896 981 nd Park 125 1141 nd nd 241 338 437 522 197	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197	797 910 995 nd 23 A-IIb 1139 1155 nd nd 241 338 437 522 197	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52	811 924 1009 nd aa 3 9 dd dd 11 8 7 2 7	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 241 338 437 522 197	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197	825 938 1023 nd 2 A- 11 11	839 952 1037 nd 28 IVC 167 185 nd nd nd 241 338 337 522 197	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 lb 125 141 nd nd nd 227 324 423 508 197 282	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd 241 338 437 522 197 282	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28	811 924 1009 nd da 3 9 dd dd 1 1 8 8 7 2 2 7 2	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282	825 938 1023 nd 2 A- 111 111	839 952 1037 nd 28 IVC 167 185 nd nd 241 338 337 322 197 282	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 lb 125 141 nd nd 227 324 123 508 197 282 nd	nd 783 896 981 nd Person No. 121 A-lc 1125 1141 nd nd 241 338 437 522 197 282 nd	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28 n	811 924 1009 nd la 3 9 dd dd 1 8 7 7 2 7 2 d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd	825 938 1023 nd 2 A- 111 111	839 952 1037 nd 28 IVC 167 185 nd nd 241 338 137 522 97 282 nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$	nd 783 882 967 nd	nd 797 882 967 nd 20 lb 125 141 nd nd nd 227 324 423 508 197 282	nd 783 896 981 nd 21 A-Ic 1125 1141 nd nd 241 338 437 522 197 282	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282	797 910 995 nd 23 A-IIb 1139 1155 nd nd 241 338 437 522 197 282	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28	811 924 1009 nd la 3 9 dd dd 1 8 7 7 2 7 2 d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282	825 938 1023 nd 2 A- 111 111	839 952 1037 nd 28 IVC 167 185 nd nd 241 338 337 322 197 282	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \\ \hline \\ & \text{ion} \\ \hline \\ & \text{In} \\ & \text{In}$	nd 783 882 967 nd 3 3 4 4 4 4 4 4 5 5 17 7 5 5 12 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	nd 797 882 967 nd 20 lb 125 141 nd nd 1227 324 423 508 197 282 nd nd nd	nd 783 896 981 nd 21 A-lc 1125 1141 nd nd 241 338 437 522 197 282 nd nd	nd 797 896 981 nd 22 A-lla 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-IIII 115 116 n n 24 33 43 52 19 28 n n	811 924 1009 nd 3 9 dd d1 1 8 7 2 2 7 2 2 dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd	825 938 1023 nd 2 A- 111 111	839 952 1037 nd 28 IVC 67 185 nd nd 241 338 137 332 997 282 nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \\ \hline \\ & \text{ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ $	nd 783 882 967 nd 25 11 11 11 11 11 11 11 11 11 11 11 11 11	nd 797 882 967 nd 20 lb 25 141 nd nd 227 324 123 508 197 282 nd nd nd nd	nd 783 896 981 nd Paris 125 1141 nd nd 241 338 437 522 197 282 nd nd nd	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-IIII 115 116 n n 24 33 43 52 19 28 n n	811 924 1009 nd 3 9 dd d1 1 8 7 2 2 7 2 2 dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd 241 338 437 522 197 282 nd nd	825 938 1023 nd 2 A- 111 111 233 44 55	839 952 1037 nd 28 IVC 67 85 nd nd 241 338 437 522 197 282 nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \\ \hline \\ & \text{ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ $	nd 783 882 967 nd	nd 797 882 967 nd Per	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 23 A-IIb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28 n n	811 924 1009 nd 3 9 d d d 11 8 7 2 7 2 7 2 d d d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 2241 338 437 522 197 282 nd 310 nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd	825 938 1023 nd 2 A- 11 111	839 952 1037 nd 28 IIVc 67 85 nd nd 241 338 137 522 97 282 nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd 241 338 451 536 nd nd nd nd d	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ \\ \hline \\ & \text{ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ & \text{Ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} $	nd 783 882 967 nd	nd 797 882 967 nd Per	nd 783 896 981 nd 21 A-Ic 1125 1141 nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 23 A-Illb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-III 115 116 n n 24 33 33 52 19 28 n n	811 924 1009 nd 3 9 d d d 1 1 8 8 7 2 7 2 7 2 d d d d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd	825 938 1023 nd 2 A- 11 111	839 952 1037 nd 28 IVC 167 85 nd nd nd 1241 1338 1337 1522 197 1822 197 1822 197 1824 199 199 199 199 199 199 199 19	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	nd 783 882 967 nd	nd 797 882 967 nd 20lb 125 141 nd nd nd 227 324 423 508 197 282 nd	nd 783 896 981 nd Person No. 121 A-Ic 1125 1141 nd nd 241 338 437 522 197 282 nd	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 23 A-Illb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 43 52 19 28 n n	811 924 1009 nd da 3 9 d d d d 1 1 8 8 7 2 7 2 d d d d d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 197 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd	825 938 1023 nd 2 A- 11 11 22 3 4 5	839 952 1037 nd 28 IVC 167 185 nd nd nd 241 2338 337 522 197 282 nd nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd d 409 nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd
$(x_5 + Na)^+$ $(x_4 + Na)^+$ $(x_3 + Na)^+$ $(x_2 + Na)^+$ $(x_1 + Na)^+$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	nd 783 882 967 nd	nd 797 882 967 nd Per	nd 783 896 981 nd Person No. 121 A-Ic 1125 1141 nd nd 241 338 437 522 197 282 nd 169	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd nd	797 910 995 nd 24 A-III 115 116 n n n 24 33 43 52 19 28 n n	811 924 1009 nd da 3 9 dd dd 1 1 8 8 7 2 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 197 nd 197 nd 197 nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd	825 938 1023 nd 2 A- 11 11 22 3 4 5	839 952 1037 nd 28 IVC 167 185 nd nd 167 185 nd nd 18338 1337 1322 197 1282 nd nd nd 169	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd d 409 nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \hline \\ & \text{ion} \\ \hline \\ \hline $	nd 783 882 967 nd	nd 797 882 967 nd 20lb 125 141 nd nd nd 2227 324 423 308 197 282 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd nd	797 910 995 nd A-III 115 116 n n n 24 33 43 52 19 28 n n n	811 924 1009 nd da 3 9 dd d 1 1 8 8 7 2 2 7 2 dd d dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd 169 254	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 381 nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd 169 nd	825 938 1023 nd 2 A- 111 11 2 3 4 5 1 1 2	839 952 1037 nd 28 IVC 167 185 nd nd 241 338 337 322 197 282 nd nd 324 409 nd nd 169 nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd d 409 nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \hline \\ & \text{ion} \\ \hline \\ \hline $	nd 783 882 967 nd	nd 797 882 967 nd 20	nd 783 896 981 nd 21 A-lc 1125 1141 nd nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd d d d d d d nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd	797 910 995 nd 24 A-III 115 116 n n n 24 33 43 52 19 28 n n n	811 924 1009 nd 3 9 dd d1 8 7 7 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd 169 254 nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 381 nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd dd 169 nd	825 938 1023 nd 2 A- 111 111 22 33 44 55	839 952 1037 nd 28 IVC 167 185 nd nd 241 338 137 522 97 282 nd nd 324 409 nd 69 nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd d 409 nd nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd
$ \begin{array}{c} (x_5 + \text{Na})^+ \\ (x_4 + \text{Na})^+ \\ (x_3 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_2 + \text{Na})^+ \\ (x_1 + \text{Na})^+ \\ \hline \\ & \text{ion} \\ \hline \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ \hline \\ & \text{In} \\ & \text{Ion} \\ \hline \\ & \text{In} \\ & \text{Ion} \\ & \text{Ion} \\ \hline \\ & \text{Ion} \\ & I$	nd 783 882 967 nd	nd 797 882 967 nd 20lb 125 141 nd nd 227 324 123 508 197 282 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-Ila 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28 n n 16 25 n n n	811 924 1009 nd 3 9 d d d 11 8 7 2 7 2 7 2 d d d d d d d d d d d d d d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd 169 254 nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 381 nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd 169 nd nd	825 938 1023 nd 2 A- 111 111 22 33 44 55	839 952 1037 nd 28 IVC 67 185 nd nd 241 338 137 282 197 282 nd nd 324 109 nd nd 69 nd nd 282	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd dud 409 nd nd nd nd nd nd nd nd nd nd	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd
(x ₅ + Na) ⁺ (x ₄ + Na) ⁺ (x ₃ + Na) ⁺ (x ₂ + Na) ⁺ (x ₂ + Na) ⁺ (x ₁ + Na) ⁺ ion A-I. [M + Na] ⁺ [M + Na - H ₂ O] ⁺ b ₁ b ₂ 22 b ₃ 32 b ₄ b ₅ [Pro-Vxx + H] ⁺ [Pro-Vxx-Aib + H] ⁺ [Pro-Vxx-Lxx + H] ⁺ [Pro-Vxx-Lxx + H] ⁺ [Pro-Lxx-Vxx + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ [Pro-Vxx-Lxx + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-Aib-CO + H] ⁺ [Pro-Vxx-Vx-X-X-CO + H] ⁺ [Pro-Vxx-Lxx-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	nd 783 882 967 nd	nd 797 882 967 nd 20	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-IIa 1139 1155 nd nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd nd	797 910 995 nd 23 A-Ilb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28 n n n 16 25 n	811 924 1009 nd 3 9 dd d1 1 8 8 7 2 7 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 2241 338 437 522 197 282 nd 310 nd nd nd nd 169 254 nd nd nd nd nd nd nd nd nd nd nd nd nd	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd d 451 636 197 nd nd nd nd nd nd nd nd nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd nd 324 409 nd nd nd 169 nd nd 282 211	825 938 1023 nd 2 A- 11 11 2 3 4 5 1 2	839 952 1037 nd 28 IVC 67 85 nd nd 241 338 137 522 97 282 nd nd d 441 338 137 522 97 282 nd nd nd d d d d d d d d d d d d d	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd d 409 nd nd nd nd d 211	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd nd nd nd
(x ₅ + Na) ⁺ (x ₄ + Na) ⁺ (x ₃ + Na) ⁺ (x ₂ + Na) ⁺ (x ₂ + Na) ⁺ (x ₁ + Na) ⁺ ion A-I [M + Na] ⁺ [M + K] ⁺ [M + Na - H ₂ O] ⁺ b ₁ c ₂ c ₃ c ₃ c ₄ c ₅ [Pro-Vxx + H] ⁺ [Pro-Vxx-Aib + H] ⁺ [Pro-Vxx-Ax + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ c ₇ [Pro-Lxx-Lxx + H] ⁺ c ₇ [Pro-Lxx-Lxx + H] ⁺ c ₇ [Pro-Lxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Lxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Lxx-Aib + H] ⁺ [Pro-Lxx-Aib + H] ⁺ [Pro-Lxx-Aib + H] ⁺	nd 783 882 967 nd	nd 797 882 967 nd Per	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-Ila 1139 1155 nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd	797 910 995 nd 23 A-Illb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd A-III 115 116 n n 124 333 52 19 28 n n n 16 25 n	811 924 1009 nd 3 9 dd d1 1 8 8 7 2 7 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 2241 3338 437 522 197 282 nd 310 nd nd nd nd nd 169 254 nd nd nd nd nd nd nd 241 241 241 241 241 241 241 241 241 241	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 169 nd nd nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd 169 nd nd 282 211 nd	825 938 1023 nd 2 A- 11 111 22 34 45 12 22	839 952 1037 nd 28 IVC 67 85 nd nd 241 2338 4337 522 997 282 nd nd nd nd nd nd nd nd nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd d d d d d d d d d d d d d	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd nd nd nd
(x ₅ + Na) ⁺ (x ₄ + Na) ⁺ (x ₃ + Na) ⁺ (x ₂ + Na) ⁺ (x ₂ + Na) ⁺ (x ₁ + Na) ⁺ ion A-I [M + Na] ⁺ [M + K] ⁺ [M + Na - H ₂ O] ⁺ b ₁ c ₂ c ₃ c ₃ c ₄ c ₅ [Pro-Vxx + H] ⁺ [Pro-Vxx-Aib + H] ⁺ [Pro-Vxx-Ax + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ consider the second of the se	nd 783 882 967 nd	nd 797 882 967 nd 20	nd 783 896 981 nd 21 A-Ic 1125 1141 nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd	nd 797 896 981 nd 22 A-Ila 1139 1155 nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd	797 910 995 nd 23 A-Illb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd 24 A-III 115 116 n n 24 33 43 52 19 28 n n n 16 25 n n 118	811 924 1009 nd 3 9 dd dd 11 8 8 7 2 7 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 241 338 437 522 197 282 nd 310 nd nd nd nd nd 211 221 221 221 221 221 222 233 234 235 235 235 235 235 235 235 235 235 235	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 169 nd nd 169 nd nd 183	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd 169 nd nd 282 211 nd nd 185	825 938 1023 nd 2 A- 111 111 22 33 44 45 12 22	839 952 1037 nd 28 IVC 167 185 nd nd 1241 2338 3337 522 197 282 nd nd nd 69 nd nd 69 nd nd 169 nd 169 169 169 169 169 169 169 169	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd nd 100 100 100 100 100 100 100 10	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd nd nd nd
(X ₅ + Na) ⁺ (X ₄ + Na) ⁺ (X ₃ + Na) ⁺ (X ₂ + Na) ⁺ (X ₁ + Na) ⁺ ion A-I [M + Na] ⁺ [M + K] ⁺ [M + Na - H ₂ O] ⁺ b ₁ b ₂ b ₃ b ₄ b ₅ [Pro-Vxx + H] ⁺ [Pro-Vxx-Aib + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ [Pro-Lxx-Lxx + H] ⁺ [Pro-Vxx-Vxx + H] ⁺ [Pro-Vxx-Vxx + H] ⁺ [Pro-Vxx-Vxx + H] ⁺ [Pro-Vxx-Vxx + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-Lxx + H] ⁺ [Pro-Vxx-Lxx + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-Lxx-Aib + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-CO + H] ⁺ [Pro-Vxx-Lxx-CO + H] ⁺ [Pro-Lxx-Aib + H]	nd 783 882 967 nd	nd 797 882 967 nd Per	nd 783 896 981 nd 21	nd 797 896 981 nd 22 A-Ila 1139 1155 nd 241 338 437 522 197 282 nd nd nd nd nd nd nd nd	797 910 995 nd 23 A-Illb 1139 1155 nd nd 241 338 437 522 197 282 nd	797 910 995 nd A-III 115 116 n n 24 33 43 43 52 19 28 n n n 16 25 n n 18 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	811 924 1009 nd 3 9 dd dd 11 8 8 7 2 7 2 7 2 dd dd dd dd dd dd dd dd dd dd dd dd d	811 924 1009 nd 25 A-IIIb 1153 1169 nd nd 2241 3338 437 522 197 282 nd 310 nd nd nd nd nd 169 254 nd nd nd nd nd nd nd 241 241 241 241 241 241 241 241 241 241	825 938 1023 nd 26 A-IVa 1167 1185 nd nd 241 338 451 536 197 nd 296 nd nd 169 nd nd nd nd	839 952 1037 nd 27 A-IVb 1167 1185 nd nd 241 338 437 522 197 282 nd nd 324 409 nd nd 169 nd nd 282 211 nd	825 938 1023 nd 2 A- 111 111 22 33 44 45 12 22	839 952 1037 nd 28 IVC 67 85 nd nd 241 2338 4337 522 997 282 nd nd nd nd nd nd nd nd nd nd	839 952 1037 nd 29 A-Va 1181 1197 nd nd 241 338 451 536 nd nd nd nd d d d d d d d d d d d d d	839 952 1037 nd 30 A-Vb 1181 1197 nd nd 241 338 451 536 nd nd nd nd nd nd nd nd nd nd

Table 5 (Continued)

ion	19 A-la	20 A-lb	21 A-Ic	22 A-IIa	23 A-IIb	24 A-IIIa	25 A-IIIb	26 A-IVa	27 A-IVb	28 A-IVc	29 A-Va	30 A-Vb
[Pro-Vxx-Lxx-Aib-CO + H]+	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Aib-Aib-Aib-Pro-Lxxol + Na]+	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Aib-Vxx-Aib-Pro-Lxxol + Na]+	nd	nd	631	nd	nd	nd	nd	nd	nd	nd	nd	nd
[Pro-Aib-Lxx-Aib-Pro-Lxxol + Na]+	617	617	nd	617	617	nd	nd	nd	nd	nd	nd	nd
[Pro-Lxx-Vxx-Aib-Pro-Vxxol + Na]+	nd	nd	nd	nd	nd	nd	nd	617	nd	nd	nd	nd
[Pro-Lxx-Lxx-Aib-Pro-Vxxol + Na] ⁺ or [Pro-Vxx-Lxx-Aib-Pro-Lxxol + Na] ⁺	nd	nd	nd	nd	nd	631	631	nd	nd	nd	nd	nd
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]+	nd	nd	nd	nd	nd	nd	nd	nd	645	645	645	645
Pro-Aib + H]+	nd	nd	183	183	nd	183	183	183	nd	nd	nd	nd
[Pro-Aib-Lxx + H]+	nd	nd	296	nd	296	296	296	296	nd	nd	296	296
[Pro-Aib-Lxx-Aib + H]+	nd	nd	381	nd	381	381	381	381	nd	nd	nd	nd
$(y_8 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(y_7 + Na)^+$	nd	nd	nd	nd	431	431	431	nd	nd	nd	nd	nd
$(y_6 + Na)^+$	530	530	516	530	516	544	544	nd	nd	nd	nd	nd
$(y_5 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(y_4 + Na)^+$	712	712	726	726	726	754	754	754	nd	754	768	nd
$(y_3 + Na)^+$	825	825	825	839	839	867	853	867	881	867	881	881
$(y_2 + Na)^+$	910	910	910	924	924	952	938	952	966	952	966	966
$(y_1 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(x_8 + Na)^+$	nd	nd	nd	nd	nd	403	nd	nd	nd	431	445	nd
$(x_7 + \text{Na})^+$	502	502	nd	502	nd	516	516	516	nd	516	530	530
$(x_6 + \text{Na})^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(x_5 + Na)^+$	684	684	698	698	698	726	726	726	740	726	740	740
$(x_4 + \text{Na})^+$	797	797	797	811	811	839	825	839	853	839	853	853
$(x_3 + Na)^+$	882	882	882	896	896	924	910	924	938	924	938	938
$(x_2 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$(x_1 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

^a See **Table 3** footnote.

Table 6. Sequences of Trichocryptins A and B Produced by Members of the T. brevicompactum Complex^a

								residue							
	Α		1	2	3	4	5	6		7	8	9	10	11	[M + Na]
19	la	Ac	Vxx	Aib	Pro	Vxx	Aib	Pro)	Aib	Lxx	Aib	Pro	Lxxol	1125
20	lb	Ac	Vxx	Aib	Pro	Vxx	Aib	Pro)	Aib	Lxx	Aib	Pro	Lxxol	1125
21	Ic	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro		Aib	Vxx	Aib	Pro	Lxxol	1125
22	lla	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro		Aib	Lxx	Aib	Pro	Lxxol	1139
23	Ilb	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro		Aib	Lxx	Aib	Pro	Lxxol	1139
24	Illa	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro		Lxx	Lxx	Aib	Pro	Vxxol	1153
25	IIIb	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro)	Lxx	Vxx	Aib	Pro	Lxxol	1153
26	IVa	Ac	Lxx	Aib	Pro	Vxx	Vxx	Pro)	Lxx	Vxx	Aib	Pro	Vxxol	1167
27	IVb	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro)	Lxx	Lxx	Aib	Pro	Lxxol	1167
28	IVc	Ac	Lxx	Aib	Pro	Vxx	Aib	Pro		Lxx	Lxx	Aib	Pro	Lxxol	1167
29	Va	Ac	Lxx	Aib	Pro	Lxx	Aib	Pro		Lxx	Lxx	Aib	Pro	Lxxol	1181
30	Vb	Ac	Lxx	Aib	Pro	Lxx	Aib	Pro)	Lxx	Lxx	Aib	Pro	Lxxol	1181
								residue							
	В		1	2	3	4	5	6	7	8	9	10	11	12	[M + Na
11	la	Ac	Vxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Vxx	Aib	Pro	Lxxol	1210
12	lb	Ac	Lxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Aib	Aib	Pro	Lxxol	1210
13	lla	Ac	Vxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Lxx	Aib	Pro	Lxxol	1224
4	Ilb	Ac	Lxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Vxx	Aib	Pro	Lxxol	1224
15	Illa	Ac	Lxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Lxx	Aib	Pro	Lxxol	1238
16	IIIb	Ac	Lxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Aib	Lxx	Aib	Pro	Lxxol	1238
17	IVa	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Aib	Lxx	Aib	Pro	Lxxol	1252
18	IVb	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Aib	Lxx	Aib	Pro	Lxxol	1252
33	Va	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1266
84	Vb	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Lxxol	1266
35	Vc	Ac	Lxx	Aib	Pro	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1266
36	Vd	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1266
37	Vla	Ac	Lxx	Aib	Pro	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1280
38												Aib	Pro	Lxxol	1280

^a See **Table 4** footnote.

described for strain CBS 109720, strain CBS 112445 did not produce peptaibols with molecular masses m/z 1210. However, additional higher homologues displaying m/z 1266 and 1280 (all [M + Na]⁺) are present. Fragmentation patterns and

sequences of these trichocryptins (33, B-Va; 34, B-Vb; 35, B-Vc; and 36, B-Vd; as well as 37, B-VIa, and 38, B-VIb) are listed in **Tables 5** and 6. The C-terminal motif, Pro-Iva-Leu-Aib-Pro-Leuol, is known from harzianin HB I (38) and from

some of the previously described harzianins HC from *T. harzianum* M-903603 and M-903614 (*33*). The C-terminal motif, Pro-Ile-Leu-Aib-Pro-Valol, was reported for the trichorozins I and II isolated from a strain of *T. harzianum* (*39*).

T. cf. brevicompactum ATCC 90237. This strain shows a quite different and much more diverse pattern (Figure 2a) compared to the other isolates investigated in this study: The CID-MS and MS/MS of m/z 756, 770, and 784 (all M + H⁺) revealed the presence of homologous trichocompactins, which have been sequenced as follows below. The peak of compound 39, named TCT Va, is comparatively intense in the total ion current (TIC), although its UV absorbance is rather low. Compared to compounds 5–10, these pseudomolecular ions display a mass difference of +30 Da. This fact leads to the hypothesis that a Gly residue in the molecule might be substituted by a Ser residue.

Serine-containing peptaibiotics often tend to display additional b'_n fragments resulting from the loss of water from the corresponding b_n fragments—a feature that is important for the detection of that particular amino acid in CID-MS, MS/MS, and MS^n experiments. The proposed fragmentation pattern has, in fact, been observed, leading to the assignment of the structures indicated in Tables 3 and 4. Assuming structural homology of m/z 184, the N-terminal fragment of these compounds could consist of Ac-Aib-Gly. Thus, compound 40, named TCT IV, is a homologue of compound 5. Compounds 39 and 41 (TCT Vb) might be interpreted as homologues of compounds 7 and 8, whereas compounds 42 and 43 (TCT VIa and VIb) may represent homologues of compounds 9 and 10 with Gly in position 6 substituted by Ser. However, compounds 5-8 and 10 are also present, with 10 displaying the most abundant peak of this part of the HPLC elution profile. Fragmentation patterns and sequences of all trichocompactins are described in **Tables** 3 and 4.

Small amounts of substances with molecular masses of m/z1238, 1252, and 1266 have also been detected, which may represent compounds 15-18 and 33-36, whereas m/z 1210, 1224, and 1280 (all $[M + Na]^+$) have not been observed. The pattern of peptaibiotics with molecular masses between 1100 and 1200 Da is completely different from those of T. brevicompactum CBS 109720, IBT 40840, IBT 40839, and CBS 112445: T. cf. brevicompactum ATCC 90237 produced two additional series of homologous peptaibols-the former comprising m/z 1099, 1113, 1127, and 1141 and the latter, m/z 1129, 1143, and 1157. The fragmentation behavior of these ions was very similar to that observed for trichocryptins A and B. The molecular ions mentioned above again represented $[M + Na]^+$ adducts. They generated a series of sodiated y-type ions dominated by the corresponding sodiated x-type fragments, as proven by MS^n investigations. As previously observed for trichocryptins A and B, any diagnostic N-terminal fragments were completely suppressed in the collision chamber. However, CID-MS revealed the ions b_2-b_5 , but the b_1 fragment could not be detected. Despite this, a difference of m/z 199 most probably corresponds to the N-terminal sequence Ac-Aib-Ala, which is very common among peptaibols produced by Trichoderma spp. (20). For instance, an alanyl residue in position 2 has previously been described for the trichocellins from T. viride ATCC 20672 (40). Compounds from Trichoderma cf. brevicompactum displaying m/z 1099 (44-47), 1113 (48/49), 1127 (50-52), and 1141 (53/54), all $[M + Na]^+$ contain Ala in position 2 and were named trichobrevins A. The latter two compounds, 53, trichobrevins A-IVa, and 54, A-IVb, as well

as compound **50**, trichobrevin A-IIIa, are the most abundant peaks in the HPLC elution profile.

In the case of m/z 1129, 1143, and 1157, the CID fragments b_2-b_4 are accompanied by the corresponding $b_n-\mathrm{H}_2\mathrm{O}$ ions. This diagnostic phenomenon has previously been observed for the Ser-containing trichocompactins described above. Thus, the Ala residue in position 2 is exchanged by a seryl residue. These compounds exhibiting $[\mathrm{M}+\mathrm{Na}]^+$ ions m/z 1129 (55–57), 1143 (58/59), and 1157 (60–62) were named trichobrevins B. The fragmentation scheme and sequences of trichobrevins A and B are shown in Tables 7 and 8.

The C termini of trichobrevin compounds **45**, A-Ib, and **47**, A-Id, consist of a Vxxol residue. Interestingly, MS/MS data indicate that compound **46**, trichobrevin A-Ic, carries a C-terminal Aibol residue, whereas compound **44**, trichobrevin A-Ia, terminates in Alaol. However, the occurrence of Aibol and Alaol remains tentative. Detailed investigations, preferably on the isolated compounds, are required to unequivocally prove the presence of these distinctive structural elements as such C termini have not been previously reported in the literature.

Compounds 1-4 have also been detected. Partial sequences of a minor compound m/z 1992 were determined. Diagnostic fragments observed in the MS/MS and MSⁿ spectra give reason for the assumption that ALM F30/8 (compound **63**, cf. ref 28) could be present.

T. cf. brevicompactum IBT 40863. T. cf. brevicompactum IBT 40863 (Figure 2c) produces compounds 1-4 as main components and a number of minor ALMs, the structures of which have not been investigated in detail. Pseudomolecular ions m/z 1139, 1153, and 1167 could represent compounds 22-28 or their positional isomers. Homologues displaying m/z 1125 and 1181 [M + Na]⁺ were not detected. Minor amounts of m/z 1224, 1238, 1252, 1266, and 1280 (all [M + Na]⁺) are present, which could represent compounds 13-18 and 33-38 or positional isomers thereof. The pattern of compounds 44-62 is supposed to be identical or very closely related to that of T. cf. brevicompactum ATCC 90237—as deduced from the elution order of the respective pseudomolecular ions.

T. cf. brevicompactum NRRL 3199. As previously mentioned, this strain is known as the "classical" source of alamethicins (28), mostly producing compounds 1–4 (Figure 1b). Further alamethicin-like compounds are present in minor amounts, the sequence of which could not be determined due to their comparatively low abundance in the mixture. To date, several hundred studies dealing with research on this particular peptaibol have been published. Thus, alamethicin is regarded as the most thoroughly investigated peptaibiotic. Compound 64 displays a rather low UV absorption at 205 nm, but a remarkably good ionization in positive ESI-MS. MS/MS studies on the pseudomolecular ion m/z 1207 revealed obvious structural homology to helioferins (41) and roseoferins (42), nine-residue lipoaminopeptides from the fungicolous Mycogone rosea strains DSM 8822 and DSM 12973.

An additional diagnostic fragment, m/z 266, is found in CID-MS spectra recorded at a CID energy of 45 and 65 eV, respectively, as well as in MS³ spectra of the MS² fragment ion m/z 550. Assuming structural homology with helio- and roseoferins, the difference of m/z 213 could correspond to an AHMOD residue. At present, this lipoamino acid is known as a unique constituent of most of the leucinostatins, of trichopolyns, helioferins, roseoferins, and acremostatins (reviewed in ref 18). Thus, the fragment m/z 1135 should indicate the loss of the n-butyl side chain ([M + H - 72] $^+$) from the AHMOD residue by α -cleavage—a diagnostic feature observed in positive

Table 7. Diagnostic Fragment Ions (m/z) of Trichobrevins A and B Produced by Members of the T. brevicompactum Complex^a

	44	45	46	47	48	49	50	51	52	53	54
ion	A-la	A-lb	A-Ic	A-Id	A-IIa	A-IIb	A-IIIa	A-IIIb	A-IIIc	A-IVa	A-I
M + Na]+	1099	1099	1099	1099	1113	1113	1127	1127	1127	1141	114
$(1 + K)^{+}$	1115	1115	1115	1115	1129	1129	1143	1143	1143	1157	118
И + H] ⁺	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	- 1
$M + Na - H_2O]^+$	1081	1081	1081	1081	1095	1095	1109	1109	1109	1123	11:
91	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
2	199	nd	nd	nd	199	199	199	199	199	199	1
93	298	nd	nd	284	298	284	298	298	298	298	2
4	411	nd	nd	383	397	383	411	397	397	411	4
5	496	468	nd	468	482	468	496	482	482	496	4
Pro-Lxx-Lxx-Aib-Pro-Alaol + Na]+	603	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Pro-Lxx-Lxx-Aib-Pro-Aibol + Naj+	nd	nd	617	nd	nd	nd	nd	nd	nd	nd	
Pro-Lxx-Lxx-Aib-Pro-Vxxol + Na]+ or	nd	631	nd	631	631	nd	631	nd	nd	nd	
[Pro-Vxx-Lxx-Aib-Pro-Lxxol + Na] ⁺											
Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]+	nd	nd	nd	nd	nd	645	nd	645	645	645	6
7 + Na)+	nd	nd	nd	405	419	nd	433	418	418	433	4
		nd		490	504		518	504	504	518	7
√ ₆ + Na) ⁺	nd		nd			nd					
/ ₅ + Na) ⁺	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	_
∕ ₄ + Na) ⁺	728	nd	nd	700	714	700	728	714	714	728	7
$(3 + Na)^{+}$	841	nd	827	813	827	813	841	827	827	841	8
∕2 + Na) ⁺	926	nd	nd	898	912	898	926	912	912	926	(
∕₁ + Na)+	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
r ₇ + Na)+	nd	nd	nd	377	nd	377	405	nd	nd	405	4
κ ₆ + Na)+	490	462	476	462	476	462	490	476	476	490	4
(₅ + Na) ⁺	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
$(x_4 + Na)^+$	700	672	686	672	686	672	700	686	686	700	7
x ₃ + Na) ⁺	813	785	799	785	799	785	813	799	799	813	8
$(x_2 + Na)^+$	898	870	884	870	884	870	898	884	884	898	8
$\kappa_1 + Na)^+$	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
ion	5 5 B-		56 B-lb	57 B-Ic		58 -Ila	59 B-IIb	60 B-IIIa		61 -IIIb	62 B-III
[M + Na] ⁺	11:		1129	1129		143	1143	1157		157	1157
	114									173	117
$[M + K]^+$			1145	1145	ı	159	1159	1173	- 1		
$[M + H]^+$		nd	nd	nd		nd 105	nd	nd	4.	nd 100	n
$[M + Na - H_2O]^+$	11		1111	1111	1	125	1125	1139	11	139	113
<i>b</i> ₁		nd	nd	nd		nd	nd	nd		nd	n
$b_2 - H_2O$		97	nd	197		197	197	197		197	19
b_2		nd	nd	215		215	215	215		215	21
$b_3 - H_2O$	29	96	nd	296		296	296	296	2	296	29
b_3	3	14	nd	314	;	314	314	314	(314	31
$b_4 - H_2O$	40	09	nd	nd		409	395	409	4	409	40
b_4	42	27	399	413		427	413	427	4	427	42
$b_5 - H_2O$		nd	nd	nd		494	nd	nd		nd	49
b ₅		12	484	498		512	498	512		512	51
[Pro-Lxx-Lxx-Aib-Pro-Aibol + Na]+		17	nd	nd		nd	nd	nd	·	nd	n
[Pro-Lxx-Lxx-Aib-Pro-Vxxol + Na]+ or		nd	nd	631	(631	nd	nd		nd	n
[Das March and Alls Das Lorent v 11 11		1	0.45				0.45	0.45		C 4 F	0.4
[Pro-Vxx-Lxx-Aib-Pro-Lxxol + Na]+		201	645	nd		nd	645	645		645	64
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]+		nd				nd	nd	nd		449	n
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ (y ₇ + Na) ⁺	1	nd	nd	nd				/		534	n
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ $(y_7 + \text{Na})^+$ $(y_6 + \text{Na})^+$	1	nd nd	506	520		nd	nd	534	;		
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ $(y_7 + \text{Na})^+$ $(y_6 + \text{Na})^+$ $(y_5 + \text{Na})^+$	 	nd nd nd	506 nd	520 nd		nd nd	nd	nd		nd	n
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ $(y_7 + \text{Na})^+$ $(y_6 + \text{Na})^+$	1 1 7	nd nd nd 14	506 nd 716	520 nd 730		nd nd 744	nd 730	nd 744	-	nd 744	n 74
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ $(y_7 + \text{Na})^+$ $(y_6 + \text{Na})^+$ $(y_5 + \text{Na})^+$	1 1 7 8	nd nd nd 14 57	506 nd 716 829	520 nd 730 843		nd nd	nd 730 843	nd 744 857	-	nd	n 74 85
$[Pro-Lxx-Lxx-Aib-Pro-LxxoI + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$	1 1 7 8	nd nd nd 14	506 nd 716	520 nd 730		nd nd 744	nd 730	nd 744	-	nd 744	n 74 85
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_3 + Na)^+$ $(y_2 + Na)^+$	1 1 74 89 94	nd nd nd 14 57	506 nd 716 829 914	520 nd 730 843 928		nd nd 744 857 942	nd 730 843 928	nd 744 857 942	-	nd 744 857 942	n 74 85 94
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_3 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$	1 1 74 89 1	nd nd 14 57 42 nd	506 nd 716 829 914 nd	520 nd 730 843 928 nd	!	nd nd 744 857 942 nd	nd 730 843 928 nd	nd 744 857 942 nd	8	nd 744 857 942 nd	n 74 85 94 n
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_3 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$ $(x_7 + Na)^+$	1 1 74 89 1 1	nd nd 14 57 42 nd	506 nd 716 829 914 nd nd	520 nd 730 843 928 nd nd	!	nd nd 744 857 942 nd 431	nd 730 843 928 nd nd	nd 744 857 942 nd 421		nd 744 857 942 nd 421	n 74 85 94 n 42
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_2 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$ $(x_7 + Na)^+$ $(x_6 + Na)^+$	1 74 89 1 1 50	nd nd 144 57 42 nd nd	506 nd 716 829 914 nd nd	520 nd 730 843 928 nd nd 492	!	nd nd 744 857 942 nd 431 516	nd 730 843 928 nd nd 492	nd 744 857 942 nd 421 nd		nd 744 857 942 nd 421 506	n 74 85 94 n 42 n
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_2 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$ $(x_7 + Na)^+$ $(x_6 + Na)^+$ $(x_6 + Na)^+$	1 74 89 1 1 50	nd nd 144 57 42 nd nd 06	506 nd 716 829 914 nd nd nd	520 nd 730 843 928 nd nd 492 nd		nd nd 744 857 942 nd 431 516 nd	nd 730 843 928 nd nd 492 nd	nd 744 857 942 nd 421 nd nd	- - - - - - -	nd 744 857 942 nd 421 506 nd	n 74 85 94 n 42 n
$[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na]^+$ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_2 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$ $(x_7 + Na)^+$ $(x_6 + Na)^+$ $(x_6 + Na)^+$ $(x_6 + Na)^+$ $(x_4 + Na)^+$	1 74 88 94 1 1 50 1	nd nd 144 57 42 nd nd 06 nd	506 nd 716 829 914 nd nd nd nd	520 nd 730 843 928 nd nd 492 nd 702		nd nd 744 857 942 nd 431 516 nd 716	nd 730 843 928 nd nd 492 nd 702	nd 744 857 942 nd 421 nd nd 716		nd 744 857 942 nd 421 506 nd 716	n 74 85 94 n 42 n n
[Pro-Lxx-Lxx-Aib-Pro-Lxxol + Na] ⁺ $(y_7 + Na)^+$ $(y_6 + Na)^+$ $(y_5 + Na)^+$ $(y_4 + Na)^+$ $(y_3 + Na)^+$ $(y_2 + Na)^+$ $(y_1 + Na)^+$ $(y_1 + Na)^+$ $(x_7 + Na)^+$ $(x_6 + Na)^+$ $(x_6 + Na)^+$	1 74 88 94 1 1 50 1 82 82 83	nd nd 144 57 42 nd nd 06	506 nd 716 829 914 nd nd nd	520 nd 730 843 928 nd nd 492 nd		nd nd 744 857 942 nd 431 516 nd	nd 730 843 928 nd nd 492 nd	nd 744 857 942 nd 421 nd nd		nd 744 857 942 nd 421 506 nd	n 74 85 94 n 42 n n 71 82 91

^a See **Table 3** footnote.

ES-MS of the lipoaminopeptide antibiotics mentioned above. The C terminus of helio- and roseoferins consists of either a 2-[(2'-aminopropyl)-methylamino]-ethanol (AMAE, m/z 132) or a 2-(2'-aminopropyl)amino-ethanol (AAE, m/z 118) residue. Furthermore, the presence of a C-terminal AMAE is indicated by the loss of C_3H_9NO from the pseudomolecular ion. Conse-

quently, $[M + H - 75]^+$ should be formed—a fragment that is present at m/z 1132. Moreover, m/z 1189 indicates the loss of water from $[M + H]^+$ —a typical feature of C-terminal (amino) alcohols. CID-MS/MS investigations on m/z 266 revealed its corresponding a-type fragment m/z 238. Further diagnostic fragments were not observed, due to the comparatively low

Table 8. Sequences of Trichobrevins A and B Produced by Members of the T. brevicompactum Complex^a

							re	sidue						
			1	2	3	4	5	6	7	8	9	10	11	[M + Na]+
44	A-la	Ac	Aib	Ala	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Alaol	1099
45	A-Ib	Ac	Aib	Ala	Aib	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1099
46	A-Ic	Ac	Aib	Ala	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Aibol	1099
47	A-Id	Ac	Aib	Ala	Aib	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1099
48	A-IIa	Ac	Aib	Ala	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1113
49	A-IIb	Ac	Aib	Ala	Aib	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1113
50	A-IIIa	Ac	Aib	Ala	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1127
51	A-IIIb	Ac	Aib	Ala	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1127
52	A-IIIc	Ac	Aib	Ala	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1127
53	A-IVa	Ac	Aib	Ala	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1141
54	A-IVb	Ac	Aib	Ala	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1141
55	B-la	Ac	Aib	Ser	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Aibol	1129
56	B-lb	Ac	Aib	Ser	Vxx	Aib	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1129
57	B-Ic	Ac	Aib	Ser	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1129
58	B-IIa	Ac	Aib	Ser	Vxx	Vxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1143
59	B-IIb	Ac	Aib	Ser	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Vxxol	1143
60	B-IIIa	Ac	Aib	Ser	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1157
61	B-IIIb	Ac	Aib	Ser	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1157
62	B-IIIc	Ac	Aib	Ser	Vxx	Lxx	Aib	Pro	Lxx	Lxx	Aib	Pro	Lxxol	1157

^a See Table 4 footnote.

abundance of m/z 266, which was not sufficient to perform further CID-MSⁿ experiments. Considering the obvious structural homologies with helio- and roseoferins, the ion m/z 266 could consist of a Pro linked to an α-methyldecanoic acid residue. Positional isomers or higher homologues of compound 64 have not been detected. However, homologues displaying a mass difference of -14 Da $(m/z 1193, [M + H]^+)$ are present. The C-terminal AMAE residue of compound **64** is replaced by AAE in compound 65—as previously described as a structural variation of helio- and roseoferins (40, 41). The Lxx residue in position 6 of compound 64 is exchanged by Vxx in compound 66, which carries a C-terminal AMAE residue. The presence of m/z 1118 indicates a C-terminal AMAE residue for compound **67**. Interestingly, MS³ of the MS² ions m/z 536 and 621 proved that m/z 465 and 266 are formed. Isomerism is therefore located in the lipoamino acid residue, as also observed for compound **68**. Assuming structural homology with the previously described compounds 64-66, sequences containing a novel desmethyl-AHMOD residue (m/z 199) are proposed for compounds 67 and **68**. The Ala residue in position 7 of compound **64** is exchanged by Gly in compound 69, which carries AHMOD in position 3 and a C-terminal AMAE residue. Compounds with a strongly basic secondary or tertiary amine such as AAE or AMAE, respectively, which is bound to a lipophilic backbone, give a positive reaction in the two-phase vertical stacking assay (43). This diagnostic feature, which has previously been described for helio- and roseoferins (41, 42), was also observed for extracts from T. cf. brevicompactum NRRL 3199. The positive reaction of helioferin in the two-phase vertical stacking assay is correlated with a strong ionophoric activity of this antibiotic (44). Therefore, these seven novel compounds from Trichoderma cf. brevicompactum NRRL 3199, which promote the transfer of water-soluble helianthin to a toluene layer, were named **trichoferins** (TFR) **A**–**F**. Their fragmentation patterns and structures are illustrated in Tables 9 and 10. T. cf. brevicompactum strains ATCC 90237 and IBT 40863 also produced compound 64, trichoferin A, as proven by MS/MS and CID-MS experiments. Minor amounts of an ion m/z 1207 that could be identical with compound 64 were also found in T. brevicompactum CBS 109720, whereas only trace amounts of m/z 1207 are present in T. brevicompactum CBS 112445, IBT 40840, and IBT 40839. It should be mentioned that

Table 9. Diagnostic Fragment Ions (*m/z*) of Trichoferins Produced by Members of the *T. brevicompactum* Complex^a

	64	65	66	67	68	69
ion	Α	В	С	D	Е	F
[M + H]+	1207	1193	1193	1193	1193	1193
[M + Na]+	1229	1215	1215	1215	1215	1215
$[M - H_2O]^+$	1189	1175	1175	1175	nd	no
$[M - C_4H_7O]^+$	1135	1120	1120	1120	1120	1120
$[M - C_3H_8NO]^+$	1132	nd	1060	1060	1118	no
$[M - C_2H_6NO]^+$	nd	1132	nd	nd	nd	no
b_1	nd	nd	nd	nd	nd	no
b_2	266	266	266	266	266	266
$b_3 - CO$	nd	nd	nd	nd	419	n
$b_3 - H_2O$	nd	nd	nd	nd	447	n
b_3	479	479	479	465	465	n
$b_4 - H_2O$	nd	nd	nd	nd	518	n
b ₄	550	550	550	536	536	550
<i>b</i> ₅ - CO	nd	nd	nd	nd	593	n
$b_5 - H_2O$	nd	nd	nd	nd	603	n
b_5	635	635	635	621	621	63
b_6	720	720	720	706	706	72
b_7	833	833	819	805	819	83
b_8	904	904	890	890	890	89
b_9	989	989	975	975	975	97
<i>b</i> ₁₀	1074	1074	1060	1060	1060	1060
a_2	238	238	238	238	238	23

^a See Table 3 footnote.

compounds **65–69** (trichoferins B–F) have been detected only in *T*. cf. *brevicompactum* NRRL 3199.

Furthermore, the strain produces novel sequences of trichocompactins VII, VIIIa, and VIIIb with Gly in position 6 replaced by Ala (compounds 70–72). In addition to that, three serine-containing trichocompactins IX, Xa, and Xb were detected (compounds 73–75). Interestingly, compounds 5–10 could not be found. Fragmentations and sequences of all trichocompactins described in this study are listed in **Tables 2** and **3**. Compounds **44–62** were detected again and their structures proven by CID-MS and MSⁿ experiments. In contrast to what was found for *T*. cf. *brevicompactum* ATCC 90237 and IBT 40863, compounds **61** and **62** were the most prominent ions besides the compounds **1–4**

Table 10. Sequences of Trichoferins Produced by Members of the T. brevicompactum Complex^{a,b}

					residue													
			1	2	3	4	5	6	7	8	9	10	$[M + H]^{+}$					
64	Α	MDA	Pro	AHMOD	Ala	Aib	Aib	Lxx	Ala	Aib	Aib	AMAE	1207					
65	В	MDA	Pro	AHMOD	Ala	Aib	Aib	Lxx	Ala	Aib	Aib	AAE	1193					
66	С	MDA	Pro	AHMOD	Ala	Aib	Aib	Vxx	Ala	Aib	Aib	AMAE	1193					
67	D	MDA	Pro	desmethyl-AHMOD	Ala	Aib	Vxx	Aib	Aib	Aib	Aib	AMAE	1193					
68	Е	MDA	Pro	desmethyl-AHMOD	Ala	Aib	Aib	Lxx	Ala	Aib	Aib	AMAE	1193					
69	F	MDA	Pro	AHMOD	Ala	Aib	Aib	Lxx	Gly	Aib	Aib	AMAE	1193					

^a See Table 4 footnote. ^b Abbreviations: MDA, 2-methyldecanoic acid; AHMOD, 2-amino-4-methyl-6-hydroxy-8-oxodecanoic acid.

DISCUSSION

Screening of recently described species of *Trichoderma* greatly enhances the possibility to find new peptaibiotics. Remarkably, 69 of the 75 peptides (93%) analyzed in this study represent new sequences. The strains produced 14 12-residue trichocryptins B, 12 11-residue trichocryptins A, 19 11-residue trichobrevins A and B, 6 10-residue trichoferins, and 17 8-residue trichocompactins. The number of new compounds described in this study clearly illustrates the impressive potential of a peptaibiomic approach.

Obviously, there are structural homologies of the new 11-and 12-residue compounds with previously reported peptaibiotics, such as harzianins (33, 36, 38), antiamoebins (22), hypomurocins (37), and bergofungins (35). Thus, comparable biological activities could be expected, although the decrease in chain length may lead to a reduction in efficacy.

As alamethicins are present in every strain investigated, they should considerably contribute to the biological activity against the causal agents of Eutypa dieback and Esca disease of grapevine. The exceptional antimicrobial activity of alamethicins can be explained by the dipole flip-flop gating model of Boheim and Jung (45). Alamethicins, as long-chain, 20-residue peptaibols, may form larger and more stable pores than shorter chain peptaibiotics, thus remarkably lowering the minimal inhibitory concentration (MIC) to microorganisms (for a review see ref 31)

Structural homologies of trichoferins with the protonophoric roseo- and helioferins and the positive reaction of trichoferin-containing extracts in the two-phase vertical stacking assay indicate an ionophoric activity that may amplify the biocontrol potential of the trichoferin-producing strains. However, the importance of trichocompactins for the bioactivity of the producing strains remains doubtful.

Generally, a decrease in chain length is correlated with a loss of bioactivity as exemplified in the case of the 19-residue chrysospermins (46) and the 5-residue peptaibolin (47) from Sepedonium chrysospermum (teleomorph: Hypomyces chrysospermus). Chrysospermins may form nongated membrane channels (48), thus exhibiting strong antimicrobial activity against Gram-positive bacteria, yeasts, and fungi. They also accelerate cytodifferentiation of the coelomycete Phoma destructiva and cause neuroleptic activity in mice (49). For peptaibolin, however, no significant bioactivities have been reported.

Notably, the distribution of peptaibiotics among taxonomic groups/species clusters of *Trichoderma* is currently under investigation in order to explain and correlate their antagonistic properties (50).

According to our data, the alamethicins are restricted to the *T. brevicompactum* group, being the most abundant peptaibiotic metabolites of *T. brevicompactum* (ss).

When grown on PDA at 25 °C, *T. brevicompactum* also biosynthesized diterpene mycotoxins of the trichothecene group: strains CBS 109720, IBT 40839, and IBT 40840 produced trichodermin, whereas harzianum A was detected in strain CBS 112445 as well. However, phylogenetic analyses suggested the classification of all of these strains as *T. brevicompactum* (ss). In contrast, *T.* cf. brevicompactum ATCC 90237, IBT 40863, and NRRL 3199 mainly biosynthesized harzianum A. Notably, 17 strains belonging to the *T. brevicompactum* complex consistently produced trichothecenes on all media tested. In contrast to that, formation of trichothecenes has not been observed for any other of the more than 250 *Trichoderma* strains screened (3, 27).

This leads to the conclusion that the pattern of characteristic nonpeptidic mycotoxins (trichothecenes) and peptaibiotics (alamethicins and trichocompactins) might be used in addition to morphological and molecular data to separate the brevicompactum complex from other taxa of the genus Trichoderma. Morphological, molecular, and chemical data of strain NRRL 3199 support its affiliation with T. cf. brevicompactum rather than T. viride (3). Taken together, the differential patterns of alamethicin production as well as the production of two different trichothecene-type mycotoxins clearly support DNA sequencing results. Both molecular and chemotaxonomic approaches clearly indicate the existence of two phylogenetic species within what has been called *T. brevicompactum*, so far. Both trichocryptins and trichobrevins are more widespread in the genus Trichoderma, illustrating the limitations of chemotaxonomic conclusions focused exclusively on the pattern of peptaibiotics. Nevertheless, the taxonomy of T. brevicompactum remains a rather complex topic and is the subject of an ongoing study.

Summarizing the sequences presented in this paper, it can be concluded that peptaibiotics still seem to be of questionable chemotaxonomic importance. Literature data clearly support this opinion, because fungi belonging to divergent taxonomic groups may produce closely related sequences of peptaibiotics.

The biosynthesis of lipoaminopeptides, for example, has been described for strains of the fungicolous species *Paecilomyces lilacinus* and *Paecilomyces marquandii*, but was also observed in cultures of *Trichoderma polysporum* isolated from infested fruit bodies of *Lentinula edodes* and in the mycoparasite *M. rosea* (reviewed in ref 18).

To continue, 16-residue peptaibols, antiamoebins, were obtained from *Emericellopsis synnematicola, Emericellopsis poonensis*, *Verticillium epiphytum* (syn. *Cephalosporium pimprina*), and *Stilbella fimetaria* CBS 548.84 and ATCC 28144 (syn. *Stilbella erythrocephala*), but have also been isolated from *Clonostachys rosea* f. *catenulata* (syn. *Gliocladium catenulatum*) CBS 511.66 (21, 22).

Consequently, the formation of peptaibiotics should rather be defined as an adaptation to highly specialized modes of life of the producers, mostly being facultative or obligate plant pathogens or fungicolous fungi occupying some particular ecological niches.

ACKNOWLEDGMENT

We are very much indebted to Gary J. Samuels, Systematic Botany and Mycology Laboratory, USDA, Beltsville, MD, for valuable discussions and updates on the taxonomy of *T. brevicompactum*.

LITERATURE CITED

- Carter, M. V. The Status of Eutypa lata as a Pathogen; CAB International: Wallingford, Oxford, U.K., 1991.
- (2) Graniti, A.; Surico, G.; Mugnai, L. Esca of grapevine: a disease complex or a complex of diseases? *Phytopathol. Mediterr.* 2000, 39, 16-20.
- (3) Gräfenhan, T. Epidemiology and biological control of latent grapevine trunk diseases. Ph.D. thesis, Humboldt-University, Berlin, Germany, 2006.
- (4) Kraus, G. F.; Druzhinina, I.; Gams, W.; Bissett, J.; Zafary, D.; Szakacs, G.; Koptchinski, A.; Prillinger, H.; Zare, R. Trichoderma brevicompactum sp. nov. Mycologia 2004, 96, 1059– 1073.
- (5) Samuels, G. J. *Trichoderma*: systematics, the sexual state, and ecology. *Phytopathology* 2006, 96, 195–206.
- (6) Hjeljord, L.; Tronsmo, A. Trichoderma and Gliocladium in biological control: an overview. In Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications; Kubicek, C. P., Harman, G. E., Eds.; Taylor and Francis: London, U.K., 1998; Vol. 2, pp 131–151.
- (7) Harman, G. E.; Howell, C. R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56.
- (8) Benítez, T.; Rincón, A. M.; Limón, C. M.; Codón, A. C. Biocontrol mechanisms of *Trichoderma* strains. *Int. Microbiol.* 2004, 7, 249–260.
- (9) Howell, C. B. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 2006, 96, 178–180.
- (10) Hoitink, H. A. J.; Madden, L. V.; Dorrance, A. E. Systemic resistance induced by *Trichoderma* spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. *Phytopathology* 2006, 96, 186–189.
- (11) Harman, G. E. Overview of mechanisms and uses of *Trichoderma* spp. *Phytopathology* **2006**, *96*, 190–193.
- (12) Gams, W.; Diederich, P.; Põldmaa, K., Fungicolous fungi. In Biodiversity of Fungi: Standard Methods for Inventory and Monitoring; Müller, G., Bills, G. F., Foster, M. S., Eds.; Academic Press, Elsevier: New York, 2004; pp 343–392.
- (13) Sivasithamparam, K.; Ghisalberti, E. L. Secondary metabolism in *Trichoderma* and *Gliocladium*. In *Trichoderma and Gliocladium*. *Basic Biology*, *Taxonomy*, and *Genetics*; Kubicek, C. P., Harman, G. E., Eds.; Taylor and Francis: London, U.K., 1998; Vol. 1, pp 139–191.
- (14) Szekeres, L.; Leitgeb, B.; Kredics, L.; Antal, Z.; Hatvani, L.; Manczinger, L.; Vágvölgyi, Cs. Peptaibiotics of *Trichoderma* species—a review. *Acta Microbiol. Immunol. Hung.* 2005, 52, 137–168.
- (15) Schirmböck, M.; Lorito, M.; Wang, Y. L.; Hayes, C. K.; Arisan-Atac, C.; Scala, F.; Harman, G. E.; Kubicek, C. P. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of *Trichoderma harzianum* against phytopathogenic fungi. *Appl. Environ. Microbiol.* 1994, 60, 4364–4370.
- (16) Lorito, M.; Varkas, V.; Rebuffat, S.; Bodo, B.; Kubicek, C. P. Cell wall synthesis is a major target of mycoparasitic antagonism by *Trichoderma harzianum*. J. Bacteriol. 1996, 178, 6382–6385.
- (17) Brückner, H.; Maisch, J.; Reinecke, C.; Kimonyo, A. Use of α-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics. Screening of Hypocrea. Amino Acids 1991, 1, 251–257.

- (18) Degenkolb, T.; Berg, A.; Gams, W.; Schlegel, B.; Gräfe, U. The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J. Pept. Sci. 2003, 9, 666–678.
- (19) Krause, C.; Kirschbaum, J.; Brückner, H. Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. *Amino Acids* 2006, 435–443.
- (20) Chugh, J. K.; Wallace, B. A. Peptaibols: models for ion channels. Biochem. Soc. Trans. 2001, 29, 565–570.
- (21) Whitmore, L.; Chugh, J. K.; Snook, C. F.; Wallace, B. A. The Peptaibol Database; a World Wide Web resource currently found at http://www.cryst.bbk.ac.uk/peptaibol/welcome.shtml, 2004.
- (22) Jaworski, A.; Brückner, H. New sequences and new fungal producers of peptaibol antibiotics antiamoebins. *J. Pept. Sci.* 2000, 6, 149–167.
- (23) Thrane, U.; Poulsen, S. B.; Nirenberg, H. I.; Lieckfeldt, E. Identification of *Trichoderma* strains by image analysis of HPLC chromatograms. *FEMS Microbiol. Lett.* 2001, 203, 249–255.
- (24) Druzhinina, I.; Kubicek, C. P. Species concepts and biodiversity in *Trichoderma* and *Hypocrea*: from aggregate species to species clusters? *J. Zhejiang Univ. Sci.* 2005, 6B, 100–112.
- (25) Samuels, G. J.; Lieckfeldt, E.; Nirenberg, H. I. *Trichoderma asperellum*, a new species with warted conidia and redescription of *T. viride*. *Sydowia* 1999, 51, 71–88.
- (26) Lieckfeldt, E.; Samuels, G. J.; Nirenberg, H., I.; Petrini, O. A morphological and molecular perspective of *Trichoderma viride* is it one or two species? *Appl. Environ. Microbiol.* 1999, 65, 2418–2428.
- (27) Nielsen, K. F.; Gräfenhan, T.; Zafari, D.; Thrane, U. Trichothecene production by *Trichoderma brevicompactum. J. Agric.* Food Chem. 2005, 53, 8190–8196.
- (28) Kirschbaum, J.; Krause, C.; Winzheimer, R. K.; Brückner, H. Alamethicin sequences reconsidered and reconciled. *J. Pept. Sci.* 2003, 9, 799–809.
- (29) Jaworski, A.; Brückner, H. Sequences of polypeptide antibiotics stilboflavins, natural peptide libraries of the mold *Stilbella flavipes. J. Pept. Sci.* **2001**, *7*, 433–447.
- (30) Jaworski, A.; Kirschbaum, J.; Brückner, H. Structures of trichovirins II, peptaibol antibiotics from the mold *Trichoderma* viride NRRL 5243. J. Pept. Sci. 1999, 5, 341–351.
- (31) Duclohier, H.; Wróblewski, H. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. *J. Membr. Biol.* 2001, 184, 1–12.
- (32) Brückner, H.; Kripp, T.; Kiess, M. Polypeptide antibiotics trichorovin and trichobrachin: Sequence determination and total synthesis. In *Chemistry of Peptides and Proteins*, Proceedings of the 7th USSR–FRG Symposium on Chemistry of Peptides and Proteins, Dilizhan, USSR, Sept 23–30, 1989, and of the 8th FRG–USSR Symposium on Chemistry of Peptides and Proteins, Aachen, Germany, Sept 29–Oct, 3, 1991; Brandenburg, D., Ivanov, V., Voelter, W., Eds.; Mainz Verlag: Aachen, Germany, 1993; pp 357–373.
- (33) Rebuffat, S.; Goulard, C.; Bodo, B. Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J. Chem. Soc., Perkin Trans. 1 1995, 1849–1855.
- (34) Wilhelm, C.; Anke, H.; Flores, Y.; Sterner, O. New peptaibols from *Mycogone cervina*. J. Nat. Prod. 2004, 67, 466–468.
- (35) Grigoriev, P. A.; Berg, A.; Schlegel, R.; Gräfe, U. Differences in ion permeability of an artificial bilayer membrane caused by ampullosporin and bergofungin, new 15-membered peptaiboltype antibiotics. *Bioelectrochem. Bioenerg.* 1997, 44, 155–158.
- (36) Rebuffat, S.; Hlimi, S.; Prigent, Y.; Goulard, C.; Bodo, B. Isolation and structural elucidation of the 11-residue peptaibol antibiotic, harzianin HK VI. J. Chem. Soc., Perkin Trans. 1 1996, 2021–2027.
- (37) Becker, D.; Kiess, M.; Brückner, H. Structures of peptaibol antibiotics hypomurocin A and B from the ascomycetous fungus *Hypocrea muroiana* Hino et Katsumoto. *Liebigs Ann./Recl.* **1997**, 767–772.

- (38) Augeven-Bour, I.; Rebuffat, S.; Auvin-Guette, C.; Goulard, C.; Prigent, Y.; Bodo, B. Harzianin HB I, an 11-residue peptaibol from *Trichoderma harzianum*: isolation, sequence, solution synthesis and membrane activity. *J. Chem. Soc., Perkin Trans.* 1 1997, 1587–1594.
- (39) Iida, A.; Sanekata, M.; Wada, S.-I.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Asami, K. Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I—IV, from the fungus *Trichoderma harzianum*. Chem. Pharm. Bull. 1995, 43, 392—397.
- (40) Wada, S.-I.; Nishimura, T.; Iida, A.; Fujita, T. Primary structures of antibiotic peptides trichocellins-A and -B from *Trichoderma* viride. Tetrahedron Lett. 1994, 35, 3095–3098.
- (41) Gräfe, U.; Ihn, W.; Ritzau, M.; Schade, W.; Stengel, C.; Schlegel, B.; Fleck, W. F.; Künkel, W.; Härtl, A.; Gutsche, W. Helioferins: novel antifungal lipopeptides from *Mycogone rosea*: screening, isolation and biological properties. *J. Antibiot.* 1995, 48, 126–133.
- (42) Degenkolb, T.; Heinze, S.; Schlegel, B.; Dornberger, K.; Möllmann, U.; Dahse, H.-M.; Gräfe, U. Roseoferin—a new aminolipopeptide antibiotic complex from *Mycogone rosea* DSM 12973, structures and biological activities. *J. Antibiot.* 2000, 53, 184—190.
- (43) Stengel, C.; Reinhardt, G.; Gräfe, U. A simple screening procedure for microbial phase-transfer mediators conveying anions. J. Basic Microbiol. 1992, 32, 339–345.
- (44) Grigoriev, P. A.; Berg, A.; Schlegel, R.; Gräfe, U. Protonophoric activities of helioferin and pamamycin, lipophilic tertiary amine antibiotics from *Mycogone rosea* and *Streptomyces aurantiacus*. *Bioelectrochem. Bioenerg.* 1996, 39, 295–298.

- (45) Boheim, G.; Hanke, W.; Jung, G. Alamethicin pore formation: voltage-dependent flip-flop of α-helix dipoles. *Biophys. Struct. Mech.* 1983, 9, 181–191.
- (46) Dornberger, K.; Ihn, W.; Ritzau, M.; Gräfe, U.; Schlegel, B.; Fleck, W. F.; Metzger, J. W. Chrysospermins, new peptaibol antibiotics from *Apiocrea chrysosperma* Ap101. *J. Antibiot.* 1995, 48, 977–989.
- (47) Hülsmann, H.; Heinze, S.; Ritzau, M.; Schlegel, B.; Gräfe, U. Isolation and structure of peptaibolin, a new peptaibol from Sepedonium strains. J. Antibiot. 1998, 51, 1055–1058.
- (48) Grigoriev, P. A.; Schlegel, R.; Dornberger, K.; Gräfe, U. Formation of membrane channels by chrysospermins, new peptaibiol antibiotics. *Biochim. Biophys. Acta* 1995, 1237, 1–5.
- (49) Ritzau, M.; Heinze, S.; Dornberger, K.; Berg, A.; Fleck, W. F.; Schlegel, B.; Härtl, A.; Gräfe, U. Ampullosporin, a new peptaibol-type antibiotic from *Sepedonium ampullosporum* HKI-0053 with neuroleptic activity in mice. *J. Antibiot.* 1997, 50, 722-728.
- (50) Degenkolb, T.; Gräfenhan, T.; Berg, A.; Nirenberg, H. I.; Gams, W.; Brückner, H. Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective *Trichoderma* species. *Chem. Biodiversity* 2006, 3, 593-610.

Received for review March 21, 2006. Revised manuscript received July 24, 2006. Accepted July 24, 2006. Financial support by the Studienstiftung Mykologie (Cologne, Germany) and the Bundesprogramm Ökologischer Landbau (BLE, Bonn, Germany) is gratefully acknowledged.

JF060788Q